Trang Chủ Lớp 9 Đề kiểm tra 15 phút lớp 9

Đề kiểm tra 15 phút môn Toán có đáp án Chương 2 Đại số 9: Tìm tọa độ giao điểm của hai đường thẳng y = x (d1) và y = -x + 3 (d2)

CHIA SẺ

Cho hai đường thẳng : \(y = kx + m – 2\) (d1) và \(y = (5 – k )x + 4 – m\) (d2). Tìm k và m để (d1) và (d2) trùng nhau \((k ≠ 0; k ≠ 5).\) … trong Đề kiểm tra 15 phút môn Toán có đáp án Chương 2 Đại số 9. Xem Đề và đáp án đầy đủ phía dưới đây

Bài 1. Cho hai đường thẳng : \(y = (m – 3)x + 3\) (d1) và \(y = -x + m\) (d2). Tìm m để (d1) // (d2)

Bài 2. Cho hai đường thẳng : \(y = kx + m – 2\) (d1) và \(y = (5 – k )x + 4 – m\) (d2). Tìm k và m để (d1) và (d2) trùng nhau \((k ≠ 0; k ≠ 5).\)

Bài 3. Tìm tọa độ giao điểm của hai đường thẳng :

\(y = x\) (d1) và \(y = -x + 3\) (d2)

Bài 4. Cho hai đường thẳng : \(y = 2x + 3\) (d1) và \(y = (2k + 1)x – 3\) (d2) \((k \ne {1 \over 2})\)

Tìm điều kiện của k để (d1) và (d2) cắt nhau.


Bài 1. (d1) // (d2) \( \Leftrightarrow \left\{ {\matrix{   {m – 3 =  – 1}  \cr   {m \ne 3}  \cr  } } \right. \Leftrightarrow m = 2\)

Bài 2. (d1) và (d2) trùng nhau \( \Leftrightarrow \left\{ {\matrix{   {k = 5 – k}  \cr   {m – 2 = 4 – m}  \cr  } } \right. \Leftrightarrow \left\{ {\matrix{   {k = {5 \over 2}}  \cr   {m = 3}  \cr  } } \right.\)

Bài 3. Phương trình hoành độ giao điểm của (d1) và (d2):

\(x = -x + 3  \Leftrightarrow x = {3 \over 2}\)

Thế \(x = {3 \over 2}\) vào phương trình của \(\left( {{d_1}} \right) \Rightarrow y = {3 \over 2}\)

Vậy tọa độ giao điểm là \(\left( {{3 \over 2};{3 \over 2}} \right)\)

Bài 4. (d1) và (d2) cắt nhau \( \Leftrightarrow \left\{ {\matrix{   {2k + 1 \ne 2}  \cr   {2k + 1 \ne 0}  \cr  } } \right. \Leftrightarrow \left\{ {\matrix{   {k \ne {1 \over 2}}  \cr   {k \ne {1 \over 2}}  \cr  } } \right.\)