Trang Chủ Lớp 9 Bài tập SGK lớp 9

Giải bài 12,13,14, 15,16,17, 18,19 trang 15,16 Toán 9 tập 2: Giải hệ phương trình bằng phương pháp thế

Giải bài tập 12,13,14, 15 trang 15; Bài 16,17, 18,19 trang 16 SGK Toán 9 tập 2: Giải hệ phương trình bằng phương pháp thế – Chương 3 Đại 9.

A. Tóm tắt lý thuyết Giải hệ phương trình bằng phương pháp thế

1. Quy tắc thế dùng để biến đổi một hệ phương trình thành hệ phương trình tương đương. Quy tắc thế gồm hai bước sau:

Bước 1: Từ một phương trình của hệ đã cho (coi là phương trình thứ nhất), ta biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình thứ hai để được một phương trình mới (chỉ còn một ẩn).

Bước 2: Dùng phương trình mới để thay thế cho phương trình thứ hai trong hệ (và giữ nguyên phương trình thứ nhất).

2. Tóm tắt cách giải hệ phương trình bằng phương pháp thế.

Bước 1: Dùng quy tắc thế biến đổi hệ phương trình đã cho để được một hệ phương trình mới, trong đó có một phương trình một ẩn.

Bước 2: Giải phương trình một ẩn vừa có, rồi suy ra nghiệm của hệ đã cho.

3. Chú ý: Nếu thấy xuất hiện phương trình có các hệ số của hai ẩn đểu bằng 0 thì hệ phương trình đã cho có thể có vô số nghiệm hoặc vô nghiệm.

B. Giải bài tập Toán 9 tập 2 bài: Giải hệ phương trình bằng phương pháp thế trang 15,16.

Bài 12. Giải các hệ phương trình sau bằng phương pháp thế:
bai12

Hướng dẫn: a) Từ x – y = 3 ⇒ x = 3 + y.

Thay x = 3 + y vào phương trình 3x – 4y = 2.

Ta được 3(3 + y) – 4y = 2 ⇔ 9 + 3y – 4y = 2.

⇔ -y = -7 ⇔ y = 7

Thay y = 7 vào x = 3 + y ta được x = 3 + 7 = 10.

Vậy hệ phương trình có nghiệm (10; 7).

b) Từ 4x + y = 2 ⇒ y = 2 – 4x.

Thay y = 2 – 4x vào phương trình 7x – 3y = 5.

Ta được 7x – 3(2 – 4x) = 5 ⇔ 7x – 6 + 12x = 5.

⇔ 19x = 11 ⇔ x =11/19

Thay x =11/19 vào y = 2 – 4x ta được y = 2 – 4.11/19= 2 – 44/19
= -6/19

Hệ phương trình có nghiệm (11/9; -6/19)

c) Từ x + 3y = -2 ⇒ x = -2 – 3y.

Thay vào 5x – 4y = 11 ta được 5(-2 – 3y) – 4y = 11

⇔ -10 – 15y – 4y = 11

⇔ -19y = 21 ⇔ y = -21/19

Nên x = -2 -3(-21/19) = -2 + 63/19 = 25/19

Vậy hệ phương trình có nghiệm (25/19; – 21/19)


Bài 13. Giải các hệ phương trình sau bằng phương pháp thế:

bai13

Giải: caua

Từ phương trình (1)  ⇒ 2y = 3x -11  ⇔2016-01-05_225851

Thế (3) vào y trong phương trình (2):

2016-01-05_230022

⇔ 8x -15x + 55 = 6  (Quy đồng mẫu số 2 vế)

⇔ -7x = -49 ⇔ x = 7.

Thế x = 7 vào (3)  ta được 2016-01-05_230220

⇔ y = 5. Nghiệm của hệ phương trình đã cho là (7; 5)

caub

Từ phương trình (1) ⇒Untitled-32

Thế (3) vào x trong phương trình (2):12

Advertisements (Quảng cáo)

⇔ 10y + 30 – 24y = 9 (Quy đồng mẫu số 2 vế)

⇔ -14y = -21 ⇔ y =3/2

Thế y = 3/2 vào (3)  ta được

bai13_1

Vậy hệ phương trình có nghiệm (3;3/2).


Bài 14 trang 15. Giải các hệ phương trình bằng phương pháp thế:bai-14

Giải: a) Từ phương trình thứ nhất ta có x = -y√5.

Thế vào x trong phương trình thứ hai ta được:

-y√5.√5+ 3y = 1 – √5
⇔ -2y = 1 – √5

bai14

Từ đó: Untitled-37

Vậy hệ phương trình có nghiệm: (x, y) = 2016-01-05_231702

b) Từ phương trình thứ hai ta có y = 4 – 2√3- 4x.

Thế vào y trong phương trình thứ hai được

(2 -√3 )x – 3(4 – 2√3- 4x) = 2 + 5√3⇔ (14 – √3 )x = 14 – √3
⇔ x = 1

Từ đó y = 4 – 2√3- 4 . 1 = -2√3

Vậy hệ phương trình có nghiệm:(x; y) = (1; -2√3)


Bài 15 trang 15 Toán 9. Giải hệ phương trình 2016-01-05_231921

trong mỗi trường hợp sau:

a) a = -1;             b) a = 0;              c) a = 1.

Hướng dẫn: a) Khi a = -1, ta có hệ phương trìnhUntitled-38

Hệ phương trình vô nghiệm.

b) Khi a = 0, ta có hệ 2016-01-05_232123

Từ phương trình thứ nhất ta có x = 1 – 3y.

Thế vào x trong phương trình thứ hai, được:

Advertisements (Quảng cáo)

1 – 3y + 6y = 0 ⇔ 3y = -1 ⇔ y = -1/3

Từ đó x = 1 – 3(-1/3) = 2

Hệ phương trình có nghiệm (x; y) = (2; -1/3).

c) Khi a = 1, ta có hệcauc

Hệ phương trình có vô số nghiệm.


Bài 16. Giải hệ phương trình

bai16

Đáp án: a)

bai16

Từ phương trình (1) ⇔ y = 3x – 5   (3)

Thế (3) vào y trong phương trình (2): 5x + 2(3x – 5) = 23

⇔ 5x + 6x – 10 = 23 ⇔ 11x = 33 ⇔x = 3

Thay x = 3 vào (3) ta có y = 3.3 – 5 = 4.

Vậy hệ có nghiệm (x; y) = (3; 4).

b)

caub

Từ phương trình (2) ⇔ 2x – y = -8 ⇔ y = 2x + 8   (3)

Thế (3) vào y trong phương trình (1): 3x + 5(2x + 8) = 1

⇔ 3x + 10x + 40 = 1 ⇔ 13x = -39

⇔ x = -3

Thay x = 3 vào (3) ta có y = 2(-3) + 8 = 2.

Vậy hệ có nghiệm (x; y) = (-3; 2).

c)

cau-c

Phương trình (1) ⇔ x = 2/3y         (3)

Thế (3) vào x trong phương trình (2): 2/3y + y = 10 ⇔ 5/3y = 10

⇔ y = 6.

Thay y = 6 vào (3) ta có x = 2/3. 6 = 4

Vậy nghiệm của hệ là (x; y) = (4; 6).


Bài 17 trang 16 Toán 9. Giải hệ phương trình sau bằng phương pháp thế.bai-17Hướng dẫn bài 17:

a) bai17a

Từ phương trình (2) ⇔ x = √2 – y√3 (3)

Thế  (3) vào (1): ( √2 – y√3)√2 – y√3 = 1

⇔ √3y(√2  + 1) = 1 ⇔1

Từ đóUntitled-50

Vậy có nghiệm bai17_a

b) caub

Từ phương trình (2) ⇔ y = 1 – √10 – x√2   (3)

Thế (3) vào (1): x – 2√2(1 – √10 – x√2) = √5

⇔ 5x = 2√2 – 3√5 ⇔b_1

Từ đó b_2

Vậy hệ có nghiệmb_3

c) cauc

Từ phương trình (2) ⇔ x = 1 – (√2 + 1)y  (3)

Thế (3) vào (1): (√2 – 1)[1 – (√2 + 1)y] – y = √2 ⇔ -2y = 1 ⇔ y = -1/2

Từ đó x = 1 – (√2 + 1)(-1/2) = (3+ √2)/2

Vậy hệ có nghiệm (x; y) = ( (3+ √2)/2;  -1/2)


Bài 18. a) Xác định các hệ số a và b, biết rằng hệ phương trình

2016-03-21_230847

Có nghiệm là (1; -2)

b) Cũng hỏi như vậy, nếu hệ phương trình có nghiệm là (√2 – 1; √2).

Lời giải: a) Hệ phương trình có nghiệm là (1; -2) có nghĩa là xảy ra

dapan_a

b) Hệ phương trình có nghiệm là (√2 – 1; √2),

dapancaub


Bài 19. Biết rằng: Đa thức P(x) chia hết cho đa thức x – a khi và chỉ khi P(a) = 0.

Hãy tìm các giá trị của m và n sao cho đa thức sau đồng thời chia hết cho x + 1 và  x – 3:

P(x) = mx3 + (m – 2)x2 – (3n – 5)x – 4n.

Giải: P(x) chia hết cho x + 1 ⇔ P(-1) = -m + (m – 2) + (3n – 5) – 4n = 0 hay -7 -n = 0 (1)

P(x) chia hết cho x – 3 ⇔ P(3) = 27m + 9(m – 2) – 3(3n – 5) – 4n = 0 hay  36m -13m = 3 (2)

Từ (1) và (2), ta có hệ phương trình ẩn m và n.

dapanbai19

Advertisements (Quảng cáo)