Cho nửa đường tròn (O; R) đường kính AB. Kẻ các tiếp tuyến tại A và B với nửa đường tròn. Qua điểm M thuộc nửa đường tròn (M khác A và B) kẻ tiếp tuyến thứ ba cắt các tiếp tuyến tại A và B lần lượt tại C và D.
a. Chứng minh rằng : \(CD = CA + BD\); \(\widehat {COD} = 90^\circ \)
b. Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.
Advertisements (Quảng cáo)
a. Ta có: \(CA = CM, DB = DM\) (tính chất của hai tiếp tuyến cắt nhau)
Mà \(CD = CM + DM \)\(\;⇒ CD = CA + BD\)
Lại có CO và DO là các tia phân giác của các góc kề bù \(\widehat {AOM}\) và \(\widehat {BOM}\) nên \(\widehat {COD} = 90^\circ \)
b. Gọi I là trung điểm của CD, ta có: OI là đường trung tuyến của tam giác vuông COD nên \(IO = IC = ID\).
Advertisements (Quảng cáo)
hay OI là bán kính của đường tròn đường kính CD.
Dễ thấy tứ giác ABCD là hình thang vuông có OI là đường trung bình nên IO // AC và BD mà AC và BD cùng vuông góc với AB (gt)
\(⇒ IO ⊥ AB.\) Chứng tỏ AB là tiếp tuyến của đường tròn đường kính CD.