Trang Chủ Lớp 9 Đề kiểm tra 15 phút lớp 9

Chia sẻ đề kiểm tra Toán lớp 9 15 phút Chương 2 Hình học: Chứng minh rằng HA là tiếp tuyến chung của hai đường tròn (O) và (O’)

CHIA SẺ
Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Đường thẳng OO’ cắt (O) và (O’) lần lượt tại B và C (khác A). Gọi DE là tiếp tuyến chung ngoài của (O) và (O’). Trong đó, \(D ∈ (O), E ∈ (O’)\) … trong Chia sẻ đề kiểm tra Toán lớp 9 15 phút Chương 2 Hình học. Xem Đề và đáp án đầy đủ phía dưới đây

Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Đường thẳng OO’ cắt (O) và (O’) lần lượt tại B và C (khác A). Gọi DE là tiếp tuyến chung ngoài của (O) và (O’). Trong đó, \(D ∈ (O), E ∈ (O’)\). Gọi H là giao điểm của hai đường thẳng BD và CE. Chứng minh rằng :

a. \(\widehat {DHE} = 90^\circ \)

b. HA là tiếp tuyến chung của hai đường tròn (O) và (O’).


a. DE là tiếp tuyến chung ngoài của (O) và (O’) nên \(DE ⊥ OD\).

và \(DE ⊥ O’E ⇒ OD // O’E.\)

Do đó: \(\widehat {DOO’} + \widehat {EO’O} = 180^\circ \) (cặp góc trong cùng phía)

\( \Rightarrow \widehat {DOB} + \widehat {EO’C} = 180^\circ \)

Các tam giác BOD và CO’E cân tại O và O’ nên:

\(2\widehat B + 2\widehat C = 180^\circ \)

\(\Rightarrow 2\left( {\widehat B + \widehat C} \right) = 180^\circ  \Rightarrow \widehat B + \widehat C = 90^\circ \)

Trong tam giác BHC ta có \(\widehat {BHC} = 90^\circ \,\,hay\,\,\widehat {DHE} = 90^\circ .\)

b. Dễ thấy tứ giác HDAE là hình chữ nhật (có ba góc vuông).

Gọi I là giao điểm hai đường chéo AH và DE, ta có \(ID = IA\) ( tính chất hai đường chéo hình chữ nhật).

Các tam giác ODI và OAI có : OI chung, \(DI = AI\) (cmt), \(OD = OA (=R)\)

Vậy \(∆ODI = ∆OAI\) (c.c.c)

\( \Rightarrow \widehat {OAI} = \widehat {ODI} = 90^\circ \) hay \(IA ⊥ BC\) tại A

\(⇒ HA\) là tiếp tuyến chung của (O) và (O’)