Trang Chủ Lớp 12 Đề kiểm tra 1 tiết lớp 12

Kiểm tra 45 phút Chương 2 – Mặt nón, mặt trụ, mặt cầu Hình học 12: Tập hợp các đường thẳng trong không gian là

Tham khảo ngay đề kiểm tra 45 phút môn Hình học lớp 12 Chương 2 – Mặt nón, mặt trụ, mặt cầu. Với điểm \(O\) cố định thuộc mặt phẳng \(\left( P \right)\) cho trước, xét đường thẳng \(l\) thay đổi đi qua điểm \(O\) và tạo với mặt phẳng \(\left( P \right)\) một góc \({30^o}\). Tập hợp các đường thẳng trong không gian là….

1. Với điểm \(O\) cố định thuộc mặt phẳng \(\left( P \right)\) cho trước, xét đường thẳng \(l\) thay đổi đi qua điểm \(O\) và tạo với mặt phẳng \(\left( P \right)\) một góc \({30^o}\). Tập hợp các đường thẳng trong không gian là

A. một mặt phẳng.      B. hai đường thẳng.

C. một mặt trụ.           D. một mặt nón.

2. Diện tích xung quanh của một hình nón tròn xoay nội tiếp tứ diện đều cạnh \(a\) là

A. \({S_{xq}} = \dfrac{{\pi {a^2}}}{4}.\)          B. \({S_{xq}} = \dfrac{{\pi \sqrt 2 {a^2}}}{6}.\)

C. \({S_{xq}} = \dfrac{{\pi \sqrt 3 {a^2}}}{6}.\)    D. \({S_{xq}} = \dfrac{{2\pi {a^2}}}{3}.\)

3. Diện tích xung quanh của một hình nón tròn xoay ngoại tiếp tứ diện đều cạnh \(a\) là

A. \({S_{xq}} = \dfrac{{\pi {a^2}}}{3}.\)       B. \({S_{xq}} = \dfrac{{\pi \sqrt 2 {a^2}}}{3}.\)

C. \({S_{xq}} = \dfrac{{\pi \sqrt 3 {a^2}}}{3}.\)  D. \({S_{xq}} = \dfrac{{\pi \sqrt 3 {a^2}}}{6}.\)

4. Cho hình nón tròn xoay đỉnh \(S,\)đáy là đường tròn tâm \(O,\) bán kính đáy \(r = 5\). Một thiết diện qua đỉnh là tam giác \(SAB\) đều có cạnh bằng 8. Khoảng cách từ \(O\) đến mặt phẳng \(\left( {SAB} \right)\) bằng

A. \(\dfrac{{4\sqrt {13} }}{3}\).       B. \(\dfrac{{3\sqrt {13} }}{4}\).

C. \(3.\)                 D. \(\dfrac{{\sqrt {13} }}{3}\)

5. Cho hai điểm \(A,B\) cố định. Tập hợp các điểm \(M\) trong không gian sao cho diện tích tam giác \(MAB\) không đổi là

A. Mặt nón tròn xoay.

B. Mặt trụ tròn xoay.

C. Mặt cầu.

D. Hai đường thẳng song song

6. Cho hình trụ có bán kính đáy \(r\), đường cao \(h = OO’\). Cắt hình trụ đó bằng mặt phẳng \(\left( \alpha  \right)\) tùy ý vuông góc với đáy và cách điểm \(O\) một khoảng \(m\) cho trước (\(m < r\)). Khi ấy, mặt phẳng \(\left( \alpha  \right)\) có tính chất:

A. cắt hình trụ theo thiết diện là hình vuông.

B. luôn cách một mặt phẳng cho trước qua trục hình trụ một khoảng \(h\).

C. luôn tiếp xúc với một mặt trụ cố định.

D. cắt hình trụ theo thiết diện có diện tích \(h\left( {{r^2} – {m^2}} \right).\)

7. Một khối hộp chứ nhật nội tiếp trong một hình trụ. Ba kích thước của khối hộp chữ nhật là \(a,\,b,\,c\). Thể tích khối trụ bằng

A. \(\dfrac{{\pi \left( {{a^2} + {b^2}} \right)c}}{4}.\)

B. \(\dfrac{{\pi \left( {{c^2} + {b^2}} \right)a}}{4}.\)

C. \(\dfrac{{\pi \left( {{a^2} + {c^2}} \right)b}}{4}.\)

D.\(\dfrac{{\pi \left( {{a^2} + {b^2}} \right)c}}{4} \cup \dfrac{{\pi \left( {{b^2} + {c^2}} \right)a}}{4} \cup \dfrac{{\pi \left( {{c^2} + {a^2}} \right)b}}{4}.\)

8. Một hình trụ \(\left( H \right)\) có diện tích xung quanh bằng \(4\pi \). Biết thiết diện của \(\left( H \right)\) qua trục là hình vuông. Diện tích toàn phần của \(\left( H \right)\) bằng

A. \(6\pi .\)          B. \(10\pi .\)

C. \(8\pi .\)          D. \(12\pi .\)

9. Một hình trụ có diện tích xung quanh là \(4\pi \).thiết diện qua trục là hình vuông. Một mặt phẳng \(\left( \alpha  \right)\) song song với trục, cắt hình trụ theo thiết diện \(ABB’A’\), biết một cạnh của thiết diện là một dây của đường tròn đáy của hình trụ và căng một cung \(120^\circ \). Diện tích thiết diện \(ABB’A’\) bằng

A. \(\sqrt 3 .\)        B. \(2\sqrt 3 .\)

C. \(2\sqrt 2 .\)      D. \(3\sqrt 2 .\)

10: Người ta bỏ bốn quả bóng bàn cùng kích thước, bán kính bằng \(a\) vào trong một chiếc hộp hình trụ có đáy bằng hỉnh tròn lớn của quả bóng bàn. Biết quả bóng nằm dưới cùng, quả bóng nằm trên cùng lần lượt tiếp xúc với mặt đáy dưới và mặt đáy trên của hình trụ đó. Lúc đó, diện tích xung quanh của hình trụ bằng

A. \(8\pi {a^2}.\)            B. \(4\pi {a^2}.\)

C. \(16\pi {a^2}.\)          D. \(12\pi {a^2}.\)

11: Trong số các mệnh đề sau, mệnh đề nào đúng?

A. Tồn tại duy nhất một mặt cầu đi qua hai đường tròn nằm trong hai mặt phẳng cắt nhau.

B. Tồn tại duy nhất một mặt cầu đi qua hai đường tròn nằm trong hai mặt phẳng song song.

C. Tồn tại duy nhất một mặt cầu đi qua hai đường tròn cắt nhau.

D. Tồn tại duy nhất một mặt cầu đi qua hai đường tròn cắt nhau nằm trong hai mặt phẳng phân biệt.

12: Cho hình trụ có bán kính đáy bằng \(3{\rm{ cm}}\), trục \(OO’ = 8{\rm{ cm}}\) và mặt cầu đường kính \(OO’\). Hiệu số giữa diện tích mặt cầu và diện tích xung quanh hình trụ là

A. \(6\pi {\rm{ c}}{{\rm{m}}^2}.\) B. \(16\pi {\rm{ c}}{{\rm{m}}^2}.\)

C. \(40\pi {\rm{ c}}{{\rm{m}}^2}.\)          D. \(208\pi {\rm{ c}}{{\rm{m}}^2}.\)

13: Thể tích của khối cầu  ngoại  tiếp một hình hộp chữ nhật có ba kích thước \(a,\,2a,\,2a\) bằng

A. \(\dfrac{{9\pi {a^3}}}{2}.\)         B. \(\dfrac{{9\pi {a^3}}}{8}.\)

C. \(\dfrac{{27\pi {a^3}}}{2}.\)       D. \(36\pi {a^3}.\)

14: Cho mặt cầu bán kính \(5{\rm{ cm}}\)và một hình trụ có bán kính đáy bằng \(3{\rm{ cm}}\) nội tiếp trong hình cầu. Thể tích của khối trụ là

Advertisements (Quảng cáo)

A. \(24\pi {\rm{ c}}{{\rm{m}}^3}\).          B. \(36\pi {\rm{ c}}{{\rm{m}}^3}.\)

C. \(48\pi {\rm{ c}}{{\rm{m}}^3}.\)          D. \(72\pi {\rm{ c}}{{\rm{m}}^3}.\)

15: Một mặt cầu có bán kính bằng \(10{\rm{ cm}}\). Một mặt phẳng cách tâm mặt cầu \(8{\rm{ cm}}\) cắt mặt cầu theo một đường tròn. Chu vi của đường tròn đó bằng

A. \(6\pi {\rm{ cm}}{\rm{.}}\)         B. \(12\pi {\rm{ cm}}{\rm{.}}\)

C. \(24\pi {\rm{ cm}}{\rm{.}}\)       D. \(36\pi {\rm{ cm}}{\rm{.}}\)

16: Trong các đa diện sau, đa diện nào không luôn nội tiếp được trong một mặt cầu

A. Hình chóp tam giác (tứ diện).

B. Hình chóp ngũ giác đều.

C. Hình chóp tứ giác.

D. Hình hộp chữ nhật.

17: Cho tứ diện \(ABCD\) có \(AD \bot \left( {ABC} \right)\), \(DB \bot BC\), \(AB = AD = BC = a\). Kí hiệu \({V_1}\), \({V_2}\), \({V_3}\) lần lượt là thể tích của hình tròn xoay sinh bởi tam giác \(ABD\) khi quay quanh \(AD\), tam giác \(ABC\) khi quay quanh \(AB\), tam giác \(DBC\) khi quay quanh \(BC\). Trong các mệnh đề sau, mệnh đề nào đúng?

A. \({V_1} + {V_2} = {V_3}\).        B. \({V_1} + {V_3} = {V_2}\).

C. \({V_3} + {V_2} = {V_1}\).        D. \({V_1} = {V_2} = {V_3}\).

18: Cho các mệnh đề sau:

a. Hình chóp có đáy là hình thang thì có mặt cầu ngoại tiếp.

b. Hình chóp có đáy là hình thang cân thì có mặt cầu ngoại tiếp.

c. Hình chóp có đáy là hình chữ nhật thì có mặt cầu ngoại tiếp.

d. Hình chóp có đáy là hình thoi thì có mặt cầu ngoại tiếp.

Số mệnh đề đúng là?

A. \(0\).             B. \(1\).

C. \(2\).             D. \(3\).

19. Cho hai điểm \(A\), \(B\) phân biệt. Tập hợp tâm những mặt cầu đi qua \(A\) và \(B\) là

A. trung điểm của đoạn thẳng \(AB\).

B. mặt phẳng vuông góc với đường thẳng \(AB\).

C. mặt phẳng song song với đường thẳng \(AB\).

D. mặt phẳng trung trực của đoạn thẳng \(AB\).

20: Trong các mệnh đề sau, mệnh đề nào đúng?

A. Hình chóp có đáy là tứ giác thì có mặt cầu ngoại tiếp.

B. Hình chóp có đáy là hình thang vuông thì có mặt cầu ngoại tiếp.

C. Hình chóp có đáy là hình bình hành thì có mặt cầu ngoại tiếp.

D. Hình chóp có đáy là hình thang cân thì có mặt cầu ngoại tiếp.

Advertisements (Quảng cáo)

Câu

1

2

3

4

5

Đáp án

D

A

A

B

B

Câu

6

7

8

9

10

Đáp án

C

D

A

B

C

Câu

11

12

13

14

15

Đáp án

D

B

A

D

B

Câu

16

17

18

19

20

Đáp án

C

A

C

D

D

2.

 

Bán kính của hình nón là: \(r = \dfrac{{a\sqrt 3 }}{2}.\dfrac{1}{3} = \dfrac{{a\sqrt 3 }}{6}\) ; đường sinh \(l = \dfrac{{a\sqrt 3 }}{2}\)

Diện tích xung quanh của hình nón là:

\({S_{xq}} = \pi rl = \pi \dfrac{{a\sqrt 3 }}{6}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{\pi {a^2}}}{4}\)

Chọn A

3.

 

Bán kính đáy của hình nón là: \(R = \dfrac{2}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3}\)

Chiều cao của hình nón là: \(h = \sqrt {{a^2} – {{\left( {\dfrac{{a\sqrt 3 }}{3}} \right)}^2}}  = \dfrac{{a\sqrt 6 }}{3}\)

Diện tích xung quanh của hình nón là:

\({S_{xq}} = \pi Rl = \pi \dfrac{{a\sqrt 3 }}{3}.a = \dfrac{{\pi {a^2}\sqrt 3 }}{3}\)

Chọn A.

4.

 

Gọi I là trung điểm của AB, H là chân đường vuông góc của O lên mp (SAB)

\(\begin{array}{l}SO = \sqrt {S{A^2} – O{A^2}}  = \sqrt {{8^2} – {5^2}}  = \sqrt {39} \\OI = \sqrt {O{A^2} – I{A^2}}  = \sqrt {{5^2} – {4^2}}  = 3\\\dfrac{1}{{O{H^2}}} = \dfrac{1}{{S{O^2}}} + \dfrac{1}{{O{I^2}}} = \dfrac{1}{{39}} + \dfrac{1}{9} = \dfrac{{16}}{{117}}\\ \Rightarrow OH = \dfrac{{3\sqrt {13} }}{4}\end{array}\)

Chọn B

5. Gọi d là khoảng cách từ điểm M đến đường thẳng AB.

Suy ra \({S_{MAB}} = \dfrac{1}{2}.d\left( {M,AB} \right).AB = \dfrac{1}{2}d.AB\)

Vì \({S_{MAB}};AB\)  là hằng số nên d không đổi .

Vậy tập hợp các điểm M thỏa mãn yêu cầu bài toán là một mặt trụ tròn xoay.

Chọn B.

8. Gọi a là chiều cao của khối trụ suy ra khối trụ có bán kính bằng \(\dfrac{a}{2}\) .

Ta có: \({S_{xq}} = 2\pi .\dfrac{a}{2}.a = 4\pi  \Leftrightarrow a = 2\)

Diện tích toàn phần của khối trụ là: \({S_{tp}} = {S_{xq}} + 2.{S_d} = 4\pi  + 2.\pi {.1^2} = 6\pi \)

Chọn A.

9.

 

Kẻ \(O’H \bot AB \Rightarrow \sin {60^o} = \dfrac{{HB’}}{{O’B’}} = \dfrac{{\sqrt 3 }}{2} \)

\(\Rightarrow A’B’ = r\sqrt 3 \)

Ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}{S_{xq}} = 2\pi rh = 4\pi  \Rightarrow rh = 2\\h = MQ = QP = 2r\end{array} \right.\\ \Rightarrow A’B’ = \sqrt 3\\  \Rightarrow {S_{ABB’A’}} = AA’.A’B’ = 2\sqrt 3 \end{array}\)

Chọn B.

10: Chiều cao hình trụ \(h = 4d = 4.2r = 8a\)

Bán kính đáy hình trụ là R = a

Diện tích xung quanh của khối trụ là:

\({S_{xq}} = 2\pi Rh = 2\pi .a.8a = 16\pi {a^2}\)

Chọn  C.

12: Diện tích mặt cầu có đường kính OO’ = 8 cm là:

\({S_c} = 4\pi {R^2} = 4\pi {.4^2} = 64\pi \,\left( {c{m^2}} \right)\)

Diện tích xung quanh của hình trụ là:

\({S_{xq}} = 2\pi rh = 2\pi .3.8 = 48\pi \left( {c{m^2}} \right)\)

Hiệu số giữa diện tích mặt cầu và diện tích xung quanh hình trụ là:

\(64\pi  – 48\pi  = 16\pi \left( {c{m^2}} \right)\)

Chọn B

13: Bán kính khối cầu là một nửa đường chéo của hình hộp chữ nhật \(R = \dfrac{1}{2}\sqrt {{a^2} + {{\left( {2a} \right)}^2} + {{\left( {2a} \right)}^2}}  = \dfrac{3}{2}a\)

Thể tích của khối cầu ngoại tiếp hình hộp chữ nhật là:

\(V = \dfrac{4}{3}\pi {R^3} = \dfrac{4}{3}\pi {\left( {\dfrac{3}{2}a} \right)^3} = \dfrac{9}{2}\pi {a^3}\)

Chọn A.

14:

 

Hình trụ nội tiếp có chiều cao là:

\(h = 2.\sqrt {{5^2} – {3^2}}  = 2.4 = 8\,cm\)

Vậy thể tích khối trụ là:

\(V = \pi {r^2}h = \pi {.3^2}.8 = 72\pi \,c{m^3}\)

Chọn D.

15:

 

Bán kính của đường tròn đó là: \(r = \sqrt {{R^2} – O{H^2}}  = \sqrt {{{10}^2} – {8^2}}  = 6\)

Chu vi đường tròn là: \(P = 2\pi r = 2\pi .6 = 12\pi \)

Chọn B

17:

 

\(\left. \begin{array}{l}BC \bot AB\\BC \bot AD\end{array} \right\} \Rightarrow BC \bot AB\)  do đó tam giác ABC vuông cân tại B suy ra \(AC = a\sqrt 2 \)

Ta có:

\(\begin{array}{l}{V_1} = \dfrac{1}{3}\pi A{B^2}.AD = \dfrac{{\pi {a^3}}}{3};\\{V_2} = \dfrac{1}{3}.B{C^2}.AB = \dfrac{{\pi {a^3}}}{3}\\{V_3} = \dfrac{1}{3}\pi D{B^2}.BC\\\;\;\;\;\; = \dfrac{{\pi \left( {A{D^2} + A{B^2}} \right)}}{3}.BC = \dfrac{{2\pi {a^3}}}{3}\\ \Rightarrow {V_1} + {V_2} = {V_3}.\end{array}\)

Chọn  A.

18: Hình chóp có đáy là hình thang cân thì có mặt cầu ngoại tiếp. (Đúng)

Hình chóp có đáy là hình chữ nhật thì có mặt cầu ngoại tiếp. (Đúng)

Chọn C

19:  Tập hợp tâm các mặt cầu đi qua hai điểm A và B là mặt phẳng trung trực của đoạn thẳng AB.

Chọn D

Advertisements (Quảng cáo)