Trang Chủ Lớp 9 Đề kiểm tra 15 phút lớp 9

Đề kiểm tra 15 phút môn Toán Chương 1 Hình học 9: Hãy tính các tỉ số lượng giác của góc C trong tam giác ABC

Không dùng bảng số và máy tính, hãy sắp xếp các tỉ số lượng giác sau đây theo thứ tự giảm dần : sin25˚; cos35˚; sin50˚; cos70˚ … trong Đề kiểm tra 15 phút môn Toán Chương 1 Hình học 9. Xem Đề và đáp án đầy đủ phía dưới đây

Bài 1. Không dùng bảng số và máy tính, hãy sắp xếp các tỉ số lượng giác sau đây theo thứ tự giảm dần : sin25˚; cos35˚; sin50˚; cos70˚.

Bài 2. Cho ∆ABC vuông tại A, biết \(\tan B = {3 \over 4}\). Hãy tính các tỉ số lượng giác của góc C.


Bài 1. Ta có:

\(\eqalign{  & \cos 35^\circ  = \sin \left( {90^\circ  – 35^\circ } \right) = \sin 55^\circ   \cr  & \cos 70^\circ  = \sin \left( {90^\circ  – 70^\circ } \right) = \sin 20^\circ . \cr} \)

Mà \(\sin 55^\circ  > \sin 50^\circ  > \sin 25^\circ  > \sin 20^\circ  \)

\(  \Rightarrow \cos 35^\circ  > \sin 50^\circ  > \sin 25^\circ  \)\(\,> \cos 70^\circ   \)

Advertisements (Quảng cáo)

Bài 2.

Ta có:

\(\eqalign{  & \tan B = {{AC} \over {AB}} = {3 \over 4} \Rightarrow {{AC} \over 3} = {{AB} \over 4}  \cr  &  \Rightarrow {{A{C^2}} \over 9} = {{A{B^2}} \over {16}} = {{A{C^2} + A{B^2}} \over {9 + 16}}\cr&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = {{B{C^2}} \over {25}}  \cr  &  \Rightarrow {{A{C^2}} \over {B{C^2}}} = {9 \over {25}}\,\text{ và }\,{{A{B^2}} \over {B{C^2}}} = {{16} \over {25}} \cr} \)

Advertisements (Quảng cáo)

Theo định nghĩa :

\(\eqalign{  & \sin B = {{AC} \over {BC}} \cr&\Rightarrow {\sin ^2}B = {{A{C^2}} \over {B{C^2}}} = {9 \over {25}}  \cr  &  \Rightarrow \sin B = {3 \over 5}. \cr} \)

Do đó: \(\cos C = {3 \over 5}\)

Tương tự:

\(\eqalign{  & \cos B = {{AB} \over {BC}} \cr& \Rightarrow {\cos ^2}B = {{A{B^2}} \over {B{C^2}}} = {{16} \over {25}}  \cr  &  \Rightarrow \cos B = {4 \over 5}. \cr} \)

Do đó: \(\sin C = {4 \over 5}\)

Vì \(\tan B = {4 \over 5} \Rightarrow \cot C = {3 \over 4} \Rightarrow \tan C = {4 \over 3}\)

Advertisements (Quảng cáo)