Chứng tỏ số \(11111111\) là hợp số; Chứng tỏ rằng số nguyên tố p, \(p ≥ 5\), khi chia cho 6 có thể dư 1 hoặc 5 … trong Kiểm tra Tóan lớp 6 15 phút – Chương 1 – Ôn tập và bổ túc về số tự nhiên. Xem Đề và đáp án đầy đủ phía dưới đây
Bài 1. Chứng tỏ số \(11111111\) là hợp số
Bài 2. Chứng tỏ rằng số nguyên tố p, \(p ≥ 5\), khi chia cho 6 có thể dư 1 hoặc 5.
Advertisements (Quảng cáo)
Bài 1. Ta có: \(11111111 = 11000000 + 1100 + 11\) là tổng của bốn số mà mỗi số chia hết cho 11
\(⇒ 11111111\; ⋮\; 11 ⇒ 11111111\) là hợp số
Bài 2. Chia p cho 6, ta được \(p = 6q + r; 0 ≤ r ≤ 5, r ∈\mathbb N\)
+ Nếu \(r = 0 ⇒ p = 6q\) là bội của \(6 ⇒ p\) không phải là số nguyên tố
+ Nếu \(r = 2 ⇒ p = 6q + 2\) là bội của 2 (hợp số)
+ Nếu \(r = 3, 4\) tương tự, ta có p là hợp số
Vậy \(p = 6q + 1\) hoặc \(p = 6q + 5\)