Tìm ƯCLN (2010, 2012); Tìm hai số tự nhiên x, y biết rằng \(xy = 420\) và \(ƯCLN (x, y) = 20\) … trong Kiểm tra Toán lớp 6 – Chương 1 – Ôn tập và bổ túc về số tự nhiên 15 phút. Xem Đề và đáp án đầy đủ phía dưới đây
Bài 1. Tìm ƯCLN (2010, 2012)
Bài 2. Tìm hai số tự nhiên x, y biết rằng \(xy = 420\) và \(ƯCLN (x, y) = 20\).
Bài 1. Ta có: \(2010 = 2.3.5.67; 2012 = 2^2.503\).
\(⇒ ƯCLN (2010, 2012) = 2\)
Ta nhận xét rằng hai số tự nhiên chẵn liên tiếp: 2n và 2n + 2 có \(ƯCLN (2n, 2n + 2) = 2\).
Bài 2. Vì \(ƯCLN (x, y) = 20\)\( ⇒ x\;⋮\;20\) và \(y\; ⋮\; 20 ⇒ x = 20k; y = 20l\)
Vậy \(xy = (20k)(20l) = 420 \)\(⇒ 400kl = 420\).
⇒ Không tồn tại các số \(k, l ∈\mathbb N\). Vậy không tìm được x, y.