Trang Chủ Lớp 6 Đề kiểm tra 15 phút lớp 6

Đề kiểm tra 15 phút môn Toán lớp 6 – Chương 1 – Ôn tập và bổ túc về số tự nhiên: So sánh 2.5^3 và 5.2^3

So sánh \(2.5^3\) và \(5. 2^3\).; Tìm \(n ∈\mathbb N\) sao cho \(9 < 3^n<27.\) … trong Đề kiểm tra 15 phút môn Toán lớp 6 – Chương 1 – Ôn tập và bổ túc về số tự nhiên. Xem Đề và đáp án đầy đủ phía dưới đây

Bài 1. Chứng tỏ rằng : \({1^{3}} + {\rm{ }}{2^3} + {\rm{ }}{3^{3}} + {\rm{ }}{4^3} + {\rm{ }}{5^3} \)\(\,= {\rm{ }}{\left( {{\rm{ }}1{\rm{ }} + {\rm{ }}2{\rm{ }} + {\rm{ }}3 + {\rm{ }}4 + {\rm{ }}5{\rm{ }}} \right)^2}\)

Bài 2. Tìm \(n ∈\mathbb N\) ,biết \({3^4}{.3^n}:9 = {\rm{ }}{3^{7}}\)

Bài 3. So sánh \(2.5^3\) và \(5. 2^3\).

Bài 4. Tìm \(n ∈\mathbb N\) sao cho \(9 < 3^n<27.\)

Advertisements (Quảng cáo)


Bài 1. \({1^3} + {\rm{ }}{2^3} + {3^3} + {4^3} + {5^3} \)\(\,= 1 + 8+ 27 + 64 +125 = 225\)

\({\left( {1 + 2 + 3 + 4 + 5} \right)^2} = {15^2} = {\rm{ }}225\)

Advertisements (Quảng cáo)

Vậy \({1^3} + {2^3} + {3^3} + {4^3} + {5^3} \)\(\,= {\left( {1 + 2 + 3 + 4 + 5} \right)^2}\)

Bài 2 \({3^4}{.3^n}:9 = {3^4}{.3^n}:{3^2} = {3^{4 – 2}}{.3^n} \)\(\,= {3^2}{.3^n}\)

Vậy: \({3^2}{.3^n} = {3^7} \Rightarrow {3^n} = {3^7}:{3^2} \)\(\,\Rightarrow {3^n} = {3^{7 – 2}} = {3^5} \Rightarrow n = 5\)

Bài 3. Ta có \({2.5^3} = 2.125 = 250;{5.2^{3}} = 5.8 = 40\)

\(\Rightarrow {2.5^3} > 5.{2^3}.\)

Bài 4. Ta có: \(9 = {3^2};27 = {3^{3}} \Rightarrow {3^2} < {3^n} < {3^3}\). Không có giá trị của n.

Advertisements (Quảng cáo)