Bài 1: Giải hệ phương trình : \(\left\{ \matrix{ \left( {1 + \sqrt 2 } \right)x + \left( {1 – \sqrt 2 } \right)y = 5 \hfill \cr \left( {1 + \sqrt 2 } \right)x + \left( {1 + \sqrt 2 } \right)y = 3. \hfill \cr} \right.\)
Bài 2: Tìm giá trịcủa m để đường thẳng \(y = mx + 2\) đi qua giao điểm của hai đường thẳng (d1): \(2x +3y = 7\) và (d2) : \(3x + 2y = 13.\)
Bài 1: Ta có : \(\left\{ \matrix{ \left( {1 + \sqrt 2 } \right)x + \left( {1 – \sqrt 2 } \right)y = 5 \hfill \cr \left( {1 + \sqrt 2 } \right)x + \left( {1 + \sqrt 2 } \right)y = 3 \hfill \cr} \right.\)
\(\Leftrightarrow \left\{ \matrix{ 2\sqrt {2y} = – 2 \hfill \cr \left( {1 + \sqrt 2 } \right)x + \left( {1 – \sqrt 2 } \right)y = 5 \hfill \cr} \right.\)
Advertisements (Quảng cáo)
\( \Leftrightarrow \left\{ \matrix{ y = – {1 \over {\sqrt 2 }} \hfill \cr x = {{7\sqrt 2 – 6} \over 2}. \hfill \cr} \right.\)
Bài 2: Tọa độ giao điểm của (d1) và (d2) thỏa mãn hệ :
\(\left\{ \matrix{ 2x + 3y = 7 \hfill \cr 3x + 2y = 13 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ 4x + 6y = 14 \hfill \cr 9x + 6y = 39 \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{ 5x = 25 \hfill \cr 2x + 3y = 7 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ x = 5 \hfill \cr y = – 1. \hfill \cr} \right.\)
Advertisements (Quảng cáo)
Thế \(x = 5; y = − 1\) vào phương trình \(y = mx + 2\), ta được :
\( – 1 = 5m + 2 \Leftrightarrow m = – {3 \over 5}.\)