Bài 1: Tìm a, b, c trong mỗi phương trình sau :
a)\({x^2} – 2x = 0\)
b) \(2{x^2} + x – \sqrt 2 = \sqrt 2 x + 1.\)
Bài 2: Giải phương trình :
a)\({x^2} + \sqrt 2 x = 0\)
b) \({x^2} – 6x + 5 = 0.\)
Bài 3: Tìm m để hai phương trình sau có ít nhất một nghiệm chung :
\({x^2} – mx = 0\) (1) và \({x^2} – 4 = 0\) (2).
Advertisements (Quảng cáo)
Bài 1: a) \(a = 1; b) – 2; c = 0.\)
b) Ta có : \(2{x^2} + x – \sqrt 2 = \sqrt 2 x + 1 \)
\(\Leftrightarrow 2{x^2} + \left( {1 – \sqrt 2 } \right)x – \sqrt 2 – 1 = 0\)
Vậy : \(a = 2; b = 1 – \sqrt 2 ; c = – \sqrt 2 – 1.\)
Advertisements (Quảng cáo)
Bài 2: a) \({x^2} + \sqrt 2 x = 0 \Leftrightarrow x\left( {x + \sqrt 2 } \right) = 0 \)
\(\Leftrightarrow \left[ \matrix{ x = 0 \hfill \cr x = – \sqrt 2 . \hfill \cr} \right.\)
b) \({x^2} – 6x + 5 = 0 \)
\(\Leftrightarrow {x^2} – 2.x.3 + 9 – 9 + 5 = 0\)
\( \Leftrightarrow {\left( {x – 3} \right)^2} = 4 \Leftrightarrow \left| {x – 3} \right| = 2\)
\( \Leftrightarrow \left[ \matrix{ x – 3 = 2 \hfill \cr x – 3 = – 2 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{ x = 5 \hfill \cr x = 1. \hfill \cr} \right.\)
Bài 3: Ta có : (1) \( \Leftrightarrow x\left( {x – m} \right) = 0 \Leftrightarrow \left[ \matrix{ x = 0 \hfill \cr x = m \hfill \cr} \right.\)
(2) \( \Leftrightarrow \left| x \right| = 2 \Leftrightarrow x = \pm 2\)
Hai phương trình có ít nhất một nghiệm chung \( \Leftrightarrow m = \pm 2.\)