Bài 1: Cho hàm số \(y = a{x^2}.\)
a) Xác định a, biết rằng đồ thị (P ) của hàm số đi qua điểm \(A(2; − 4).\)
b) Vẽ đồ thị của hàm số với a vừa tìm được ở câu trên.
Bài 2: Cho hàm số : \(y = f\left( x \right) = – {3 \over 2}{x^2}.\) So sánh \(f\left( {{{2 + \sqrt 5 } \over 4}} \right)\) và \(f\left( {{{2 + \sqrt 6 } \over 4}} \right).\)
Bài 3: Tìm giá trị nhỏ nhất của hàm số : \(y = \left( {{m^2} + 1} \right){x^2}.\)
Advertisements (Quảng cáo)
Bài 1: a) \(A \in (P) \Rightarrow – 4 = a.{\left( 2 \right)^2} \Rightarrow a = – 1\)
Ta có : \(y = – {x^2}.\)
b) Vẽ đồ thị \(y = – {x^2}.\)
Bảng giá trị :
Advertisements (Quảng cáo)
x |
− 2 |
− 1 |
0 |
1 |
2 |
y |
− 4 |
− 1 |
0 |
− 1 |
− 4 |
Đồ thị (P) của hàm số là một parabol có đỉnh là O và trục Oy là trục đối xứng ( Xem hình vẽ).
Bài 2: Nếu \(a = – {3 \over 2} < 0\) thì hàm số nghịch biến khi \(x > 0\).
Vậy \(a = – {3 \over 2}\) thì \(0 < {{2 + \sqrt 5 } \over 4} < {{2 + \sqrt 6 } \over 4}\)\(\; \Rightarrow f\left( {{{2 + \sqrt 5 } \over 4}} \right) > f\left( {{{2 + \sqrt 6 } \over 4}} \right).\)
Bài 3: Ta có : \({m^2} + 1 > 0\), với mọi m thuộc . Vậy giá trị nhỏ nhất của hàm số là 0, khi \(x = 0.\)