Bài 1. Đưa thừa số vào trong dấu căn :
a. \(a\sqrt {{3 \over a}} \)
b. \({1 \over {2x – 1}}\sqrt {5\left( {1 – 4x + 4{x^2}} \right)} \)
Bài 2. Rút gọn :
a. \(A = \sqrt {72} – 3\sqrt {20} – 5\sqrt 2 + \sqrt {180} \)
b. \(B = 2\sqrt {3x} – \sqrt {48x} + \sqrt {108x} + \sqrt {3x}\)\( \,\,\,\,\left( {x \ge 0} \right)\)
Bài 3. Tìm x, biết :
a. \(\sqrt {4x – 20} – 3\sqrt {{{x – 5} \over 9}} = \sqrt {1 – x} \,\,\,\,\,\,\,\,\,\left( 1 \right)\)
Advertisements (Quảng cáo)
b. \(\sqrt {50x – 25} + \sqrt {8x – 4} – 3\sqrt x \)\(\, = \sqrt {72x – 36} – \sqrt {4x} \,\,\,\,\,\,\left( 2 \right)\)
Bài 1. a. Ta có: \(a\sqrt {{3 \over a}} = \sqrt {{{3{a^2}} \over a}} = \sqrt {3a} \)
(vì \(a > 0\) là điều kiện để \(\sqrt {{3 \over a}} \) có nghĩa)
Advertisements (Quảng cáo)
b. \({1 \over {2x – 1}}\sqrt {5{{\left( {1 – 2x} \right)}^2}} \)\(\; = \left\{ {\matrix{ {\sqrt 5 \text{ nếu }x > {1 \over 2}} \cr { – \sqrt 5 \text{ nếu }x < {1 \over 2}} \cr } } \right.\)
Bài 2. a. Ta có: \(A = 6\sqrt 2 – 6\sqrt 5 – 5\sqrt 2 + 6\sqrt 5 = \sqrt 2 \)
b. Ta có: \(B = 2\sqrt {3x} – 4\sqrt {3x} + 6\sqrt {3x} + \sqrt {3x} \)\(\,= 5\sqrt {3x} \)
Bài 3. a. Điều kiện : \(\left\{ {\matrix{ {x \ge 5} \cr {x \le 1} \cr } ,} \right.\) vô lí
Vậy không có giá trị x nào thỏa mãn điều kiện đã cho.
b. Ta có:
\(\left( 2 \right) \Leftrightarrow 5\sqrt {2x – 1} + 2\sqrt {2x – 1} – 3\sqrt x \)\(\,= 6\sqrt {2x – 1} – 2\sqrt x \)
\(\eqalign{ & \Leftrightarrow \sqrt {2x – 1} = \sqrt x \Leftrightarrow \left\{ {\matrix{ {x \ge {1 \over 2}} \cr {2x – 1 = x} \cr } } \right.\cr& \Leftrightarrow x = 1 \cr} \)