Trang Chủ Lớp 9 Đề kiểm tra 15 phút lớp 9

Đề kiểm tra 15 phút môn Toán Chương 4 Đại số 9: Không giải phương trình, hãy cho biết số nghiệm của phương trình x^4 -5x^2 +4 = 0

CHIA SẺ
Không giải phương trình, hãy cho biết số nghiệm của phương trình \({x^4} – 5{x^2} + 4 = 0.\); Giải phương trình … trong Đề kiểm tra 15 phút môn Toán Chương 4 Đại số 9. Xem Đề và đáp án đầy đủ phía dưới đây

Bài 1: Không giải phương trình, hãy cho biết số nghiệm của phương trình \({x^4} – 5{x^2} + 4 = 0.\)

Bài 2: Giải phương trình:

a) \({x^2} + x – 2 = \left| x \right|\)

b) \(\sqrt {x – 1}  = x – 3.\)


Bài 1: Đặt \(t = {x^2};t \ge 0.\) Ta có phương trình : \({t^2} – 5t + 4 = 0\,\,\,\,\left( * \right)\)

Ta có : \(\left\{ \matrix{  \Delta  = 9 > 0 \hfill \cr  P = 4 > 0 \hfill \cr  S = 5 > 0 \hfill \cr}  \right.\)

Vậy phương trình (*) có hai nghiệm phân biệt dương, nên phương trình đã cho có bốn nghiệm phân biệt.

Bài 2:

a) \({x^2} + x – 2 = \left| x \right|\,\,\,\left( * \right)\)

+) Nếu \(x ≥ 0\), ta có : (*) \( \Leftrightarrow {x^2} + x – 2 = x \Leftrightarrow x =  \pm \sqrt 2 \))

Vì \(x ≥ 0\), ta lấy \(x = \sqrt 2 .\)

+) Nếu \(x < 0\), ta có : (*) \( \Leftrightarrow {x^2} + x – 2 =  – x \)\(\;\Leftrightarrow {x^2} + 2x – 2 = 0 \Leftrightarrow x =  – 1 \pm \sqrt 3 \)

Vì \(x < 0\), ta lấy \(x =  – 1 – \sqrt 3 .\)

b) \(\sqrt {x – 1}  = x – 3 \)

\(\Leftrightarrow \left\{ \matrix{  x – 3 \ge 0 \hfill \cr  x – 1 = {\left( {x – 3} \right)^2} \hfill \cr}  \right.\)

\(\; \Leftrightarrow \left\{ \matrix{  x \ge 3 \hfill \cr  {x^2} – 7x + 10 = 0 \hfill \cr}  \right.\)

\( \Leftrightarrow \left\{ \matrix{  x \ge 3 \hfill \cr  \left[ \matrix{  x = 2 \hfill \cr  x = 5 \hfill \cr}  \right. \hfill \cr}  \right. \Leftrightarrow x = 5.\)