Cho tam giác ABC, trọng tâm G. Gọi \(A’B’C’\) lần lượt là điểm đối xứng của A, B, C qua G. Chứng minh: \(\Delta A’B’C’ = \Delta ABC.\) … trong Đề kiểm tra 15 phút môn Toán Chương 1 Hình học 8. Xem Đề và đáp án đầy đủ phía dưới đây
Cho tam giác ABC, trọng tâm G. Gọi \(A’B’C’\) lần lượt là điểm đối xứng của A, B, C qua G.
a)Chứng minh tứ giác \(BC’B’C\(là hình bình hành.
b)Chứng minh: \(\Delta A’B’C’ = \Delta ABC.\)
a) \(B’ B\) và \(C’,C\) đối xứng nhau qua G nên G là trung điểm của \(BB’\) và \(CC’\)
\( \Rightarrow BC’B’C\) là hình bình hành.
b) Chứng minh tương tự ta được \(AB’,A’B,C’ACA’\) là hình bình hành
suy ra
\(\eqalign & B’C’= BC, \)
\( C’A’ = AC,\)
\( B’A’ = AB \)
Do đó \(\Delta A’B’C’= \Delta ABC\left( {c.c.c} \right)\)