Bài 1. Phân tích các đa thức sau thành nhân tử:
a) \(\left( {{a^3} – {b^3}} \right) + {\left( {a – b} \right)^2}\)
c) \(\left( {{y^3} + 8} \right) + \left( {{y^2} – 4} \right).\)
b) \({\left( {{x^2} + 1} \right)^2} – 4{x^2}\)
Bài 2. Tìm x, biết:
a) \({\left( {3x – 5} \right)^2} – {\left( {x + 1} \right)^2} = 0\)
b) \({\left( {5x – 4} \right)^2} – 49{x^2} = 0.\)
Bài 1. a) \(\left( {{a^3} – {b^3}} \right) + {\left( {a – b} \right)^2} \)
\(= \left( {a – b} \right)\left( {{a^2} + ab + {b^2}} \right) + \left( {a – b} \right)\left( {a – b} \right)\)
\(= \left( {a – b} \right)\left( {{a^2} + ab + {b^2} + a – b} \right).\)
Advertisements (Quảng cáo)
b) \({\left( {{x^2} + 1} \right)^2} – 4{x^2}\)
\(= {\left( {{x^2} + 1} \right)^2} – {\left( {2x} \right)^2} \)
\(= \left( {{x^2} + 1 – 2x} \right)\left( {{x^2} + 1 + 2x} \right)\)
\( = {\left( {x – 1} \right)^2}{\left( {x + 1} \right)^2}.\)
c) \(\left( {{y^3} + 8} \right) + \left( {{y^2} – 4} \right) \)
\(= \left( {{y^3} + {2^3}} \right) + \left( {{y^2} – {2^2}} \right)\)
\( = \left( {y + 2} \right)\left( {{y^2} – 2y + 4} \right) + \left( {y + 2} \right)\left( {y – 2} \right)\)
Advertisements (Quảng cáo)
\( = \left( {y + 2} \right)\left( {{y^2} – 2y + 4 + y – 2} \right) \)
\(= \left( {y + 2} \right)\left( {{y^2} – y + 2} \right).\)
Bài 2. a) \({\left( {3x – 5} \right)^2} – {\left( {x + 1} \right)^2} \)
\(= \left( {3x – 5 + x + 1} \right)\left( {3x – 5 – x – 1} \right)\)
\( = \left( {4x – 4} \right)\left( { – 2x – 4} \right) \)
\(= 8\left( {x – 1} \right)\left( {x – 3} \right)\)
Vậy \(\left( {x – 1} \right)\left( {x – 3} \right) = 0\)
\(\Rightarrow x – 1 = 0\) hoặc \(x – 3 = 0\)
\( \Rightarrow x = 1\) hoặc \(x = 3.\)
b) \({\left( {5x – 4} \right)^2} – 49{x^2} \)
\(= {\left( {5x – 4} \right)^2} – {\left( {7x} \right)^2} \)
\(= \left( {5x – 4 + 7x} \right)\left( {5x – 4 – 7x} \right)\)
\( = \left( {12x – 4} \right)\left( { – 2x – 4} \right) \)
\(= – 8\left( {3x – 1} \right)\left( {x + 2} \right)\)
Vậy \(\left( {3x – 1} \right)\left( {x + 2} \right) = 0 \)
\(\Rightarrow 3x – 1 = 0\) hoặc \(x + 2 = 0\)
\(\Rightarrow x ={1\over 3}\) hoặc \(x = -2 \)