Trang Chủ Lớp 8 Đề kiểm tra 15 phút lớp 8

Kiểm tra 15 phút Toán Chương 1 Hình học 8: Chứng minh rằng ba điểm A, H, K thẳng hàng

CHIA SẺ
Cho hình vuông ABCD. Gọi M, N lần lượt là trung điểm của AB và BC. Gọi E là giao điểm của CM và DN. Chứng minh \(CM \bot DN\) tại E … trong Kiểm tra 15 phút Toán Chương 1 Hình học 8. Xem Đề và đáp án đầy đủ phía dưới đây

Cho hình vuông ABCD. Gọi M, N lần lượt là trung điểm của AB và BC. Gọi E là giao điểm của CM và DN.

a)Chứng minh \(CM \bot DN\) tại E.

b)Gọi K là trung điểm của DC và AH là đường cao của \(\Delta ADE\) . Chứng minh rằng ba điểm A, H, K thẳng hàng.


a) Dễ thấy \(\Delta CBM = \Delta DCN\left( {c.g.c} \right)\)

\( \Rightarrow \widehat {{C_1}} = \widehat {{D_1}}\) và \(\widehat {{M_1}} = \widehat {{N_1}}\)

Mà \(\widehat {{M_1}} + \widehat {{C_1}} = {90^ \circ }\) (vì \(\widehat {MBC} = {90^ \circ })\)

\( \Rightarrow \widehat {{N_1}} + \widehat {{C_1}} = {90^ \circ }\)

Trong đó \(\Delta CEN\) ta có \(\widehat {CEN} = {180^ \circ } – \left( {\widehat {{N_1}} + \widehat {{C_1}}} \right) = {90^ \circ }\)

Chứng tỏ \(CM \bot DN.\)

b) K là trung điểm CD, M là trung điểm AB mà \(AB//CD\) và AB = CD

\( \Rightarrow CK//AM\) và CK = AM. Do đó AMCK là hình bình hành

\( \Rightarrow AK//CM\) mà \(AH// CM\left( { \bot DN} \right).\)

Vậy AK và AH phải trùng nhau (tiên đề Ơ clit) hay ba điểm A, H, K thẳng hàng.