Bài 1. Thực hiện các phép tính:
a) \({{ab + {b^2}} \over 9}:{{{b^2}} \over {3a}}\)
b) \(\left( {{{a + b} \over {a – b}} – {{a – b} \over {a + b}}} \right):\left( {{{a + b} \over {a – b}} – 1} \right).\)
Bài 2. Tìm P, biết: \({{a + b} \over {a – b}}.P = {{{a^2} + ab} \over {2{a^2} – 2{b^2}}}.\)
Bài 3. Rút gọn: \(Q = {{{a^2} – 2a + 1} \over {b – 2}}:{{{a^2} – 1} \over {{b^2} – 4}} – {{2a – b} \over {a + 1}}.\)
Advertisements (Quảng cáo)
Bài 1. a) \({{ab + {b^2}} \over 9}:{{{b^2}} \over {3a}} = {{b\left( {a + b} \right)} \over 9}.{{3a} \over {{b^2}}} = {{a\left( {a + b} \right)} \over {3b}}\)
b) \(\left( {{{a + b} \over {a – b}} – {{a – b} \over {a + b}}} \right):\left( {{{a + b} \over {a – b}} – 1} \right) \)
\(= {{{{\left( {a + b} \right)}^2} – {{\left( {a – b} \right)}^2}} \over {{a^2} – {b^2}}}:{{2b} \over {a – b}}\)
\( = {{4ab} \over {{a^2} – {b^2}}}.{{a – b} \over {2b}} = {{2a} \over {a + b}}.\)
Advertisements (Quảng cáo)
Bài 2. \(P = {{{a^2} + ab} \over {2{a^2} – 2{b^2}}}:{{a + b} \over {a – b}} = {{a\left( {a + b} \right)} \over {2\left( {{a^2} – {b^2}} \right)}}.{{a – b} \over {a + b}} \)\(\;= {a \over {2\left( {a + b} \right)}}.\)
Bài 3. \(Q = {{{{\left( {a – 1} \right)}^2}} \over {b – 2}}.{{{b^2} – 4} \over {{a^2} – 1}} – {{2a – b} \over {a + 1}} \)
\(\;\;\;\;= {{\left( {a – 1} \right)\left( {b + 2} \right)} \over {a + 1}} – {{2a – b} \over {a + 1}}\)
\( \;\;\;\;= {{ab + 2a – b – 2 – 2a + b} \over {a + 1}} = {{ab – 2} \over {a + 1}}.\)