Bài 1: Giải phương trình :
a) \({x^2} – 2 = 5\sqrt {{x^2} – 2} – 6\)
b) \(\sqrt {1 + 4x – {x^2}} = x – 1.\)
Bài 2: Tìm m để phương trình \({x^2} – 2x + m – 8 = 0\) có hai nghiệm x1, x2 và thỏa mãn \(3{x_1} – {x_2} = 0.\)
Bài 3: Tìm m để phương trình \({x^2} – 2mx + m – 1 = 0\) có hai nghiệm x1, x2 và \(x_1^2 + x_2^2\) đạt giá trị nhỏ nhất.
Bài 4: Cho parabol (P) : \(y = – {1 \over 2}{x^2}.\) Viết phương trình đường thẳng (d) qua điểm \(M(− 1; 1)\) và (d) tiếp xúc với (P).
Bài 5: Một khu vườn hình chữ nhật có chiều rộng bằng \({1 \over 3}\) chiều dài và có diện tích bằng 507m2. Tính chu vi của khu vườn.
Bài 1: a) Đặt \(u = \sqrt {{x^2} – 2} ,\) điều kiện \(\left[ \matrix{ x \ge \sqrt 2 \hfill \cr x \le – \sqrt 2 \hfill \cr} \right.;u \ge 0 \Rightarrow {u^2} = {x^2} – 2\)
Ta có phương trình : \({u^2} = 5u – 6 \Leftrightarrow {u^2} – 5u + 6 = 0 \)
\(\Leftrightarrow \left[ {\matrix{ {{\rm{u}} = 2\left( {{\text{nhận}}} \right)} \cr {{\rm{u}} = 3\left( {{\text{nhận}}} \right)} \cr } } \right.\)
+) \({x^2} – 2 = 4 \Leftrightarrow x = \pm \sqrt 6 \)
Advertisements (Quảng cáo)
+) \({x^2} – 2 = 9 \Leftrightarrow x = \pm \sqrt {11} .\)
b) \(\sqrt {1 + 4x – {x^2}} = x – 1 \)
\(\Leftrightarrow \left\{ \matrix{ x – 1 \ge 0 \hfill \cr 1 + 4x – {x^2} = {x^2} – 2x + 1 \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \matrix{ x \ge 1 \hfill \cr 2{x^2} – 6x = 0 \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{ x \ge 1 \hfill \cr \left[ \matrix{ x = 0 \hfill \cr x = 3 \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow x = 3.\)
Bài 2: Phương trình có nghiệm x1,x2 \(\Leftrightarrow ∆’ ≥ 0 \Leftrightarrow 9 – m ≥ 0 \Leftrightarrow m ≤ 9.\)
Theo định lí Vi-ét, ta có : \({x_1} + {x_2} = 2;\,\,\,\,{x_1}{x_2} = m – 8\)
Xét hệ : \(\left\{ \matrix{ 3{x_1} – {x_2} = 0 \hfill \cr {x_1} + {x_2} = 2 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ {x_1} = {1 \over 2} \hfill \cr {x_2} = {3 \over 2} \hfill \cr} \right.\)
Advertisements (Quảng cáo)
Khi đó : \({x_1}{x_2} = {1 \over 2}.{3 \over 2} = {3 \over 4} \)\(\;\Leftrightarrow m – 8 = {3 \over 4} \Leftrightarrow m = 8{3 \over 4}\)( nhận).
Bài 3: Phương trình có nghiệm \( \Leftrightarrow ∆’ ≥ 0 \Leftrightarrow m^2– m + 1 ≥ 0\) ( luôn đúng với mọi m vì \({m^2}-{\rm{ }}m{\rm{ }} + 1{\rm{ }} = {\left( {m – {1 \over 2}} \right)^2} + {3 \over 4} \ge {3 \over 4}\)\(\; > 0)\)
Ta có :
\(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} – 2{x_1}{x_2} \)\(\;= 4{m^2} – 2m + 2 \)\(\;= {\left( {2m – {1 \over 2}} \right)^2} + {7 \over 4} \ge {7 \over 4}\)
Vậy giá trị nhỏ nhất của\(x_1^2 + x_2^2\) bằng \({7 \over 4}.\)
Dấu “=” xảy ra \( \Leftrightarrow 2m – {1 \over 2} = 0 \Leftrightarrow m = {1 \over 4}.\)
Bài 4: Phương trình đường thẳng (d) có dạng : \(y = ax + b \;( a\ne 0)\)
\(M \in (d) \Leftrightarrow 1 = − a + b \Leftrightarrow b = 1 + a.\) Vậy \(y = ax + a +1.\)
Phương trình hoành độ giao điểm ( nếu có) của (P ) và (d) :
\( – {1 \over 2}{x^2} = ax + a + 1\)
\(\Leftrightarrow {x^2} + 2ax + 2a + 2 = 0\,\,\,\,\left( * \right)\)
(P ) và (d) tiếp xúc nhau khi và chỉ khi phương trình (*) có nghiệm kép
\( \Leftrightarrow \Delta ‘ = 0 \Leftrightarrow {a^2} – 2a – 2 = 0 \)\(\;\Leftrightarrow a = 1 \pm \sqrt 3 \)
Phương trình đường thẳng (d) : \(y = \left( {1 \pm \sqrt 3 } \right)x + 2 \pm \sqrt 3 .\)
Bài 5: Gọi \(x\) là chiều dài của khu vườn ( \(x > 0;\; x \) tính bằng m), thì chiều rộng là \({1 \over 3}x\) . Ta có phương trình :
\({1 \over 3}x.x = 507 \Leftrightarrow {x^2} = 1521\)\(\; \Leftrightarrow x = \pm 39\)
Vì \(x > 0\), nên ta lấy \(x = 39\).
Khi đó chu vi là : \(2\left( {39 + {1 \over 3}.39} \right) = 104\left( m \right)\)
Vậy chu vi là \(104\) ( m).