Trang Chủ Lớp 8 Đề kiểm tra 15 phút lớp 8

Kiểm tra Toán 15 phút Chương 1 Hình học 8: Chứng minh rằng giao điểm các đường phân giac trong của các tam giác AOB; BOC; COD và DOA là đỉnh của một hình thoi

CHIA SẺ
ĐềGọi O là giao điểm các đường chéo của hình bình hành ABCD. Chứng minh rằng giao điểm các đường phân giac trong của các tam giác AOB; BOC; COD và DOA là đỉnh của một hình thoi … trong Kiểm tra Toán 15 phút Chương 1 Hình học 8. Xem Đề và đáp án đầy đủ phía dưới đây

Gọi O là giao điểm các đường chéo của hình bình hành ABCD. Chứng minh rằng giao điểm các đường phân giac trong của các tam giác AOB; BOC; COD và DOA là đỉnh của một hình thoi.


Gọi M, N, P, Q lần lượt là giao điểm các phân giác trong của các tam giác AOB, BOC, COD và DOA.

Do O là giao điểm hai đường chéo AC và BD của hình bình hành ABCD nên OA = OC và OB = OD.

Lại có:  \(\widehat B_1 = \widehat D_1;\widehat O_1 = \widehat O_2\) (M là giao điểm của các đường phân giác)

\( \Rightarrow \Delta BMO = \Delta DPO\left( {g.c.g} \right)\)

\(\Rightarrow OM = OP\)

Mặt khác ta có các điểm B, O, D thẳng hàng mà \(\widehat O_1 = \widehat O_2\) nên các điểm M, O, P  cũng thẳng hàng. Tương tự ta có \(\Delta BON = \Delta DOQ \Rightarrow ON = OQ\) và N, O, Q cũng thẳng hàng \( \Rightarrow MNPQ\) là hình bình hành (các đường chéo cắt nhau tại trung điểm mỗi đường). Mặt khác OM, ON là hai phân giác của hai góc kề bù nên \(OM \bot ON.\) Vậy MNPQ là hình thoi.