Trang Chủ Sách bài tập lớp 8 SBT Toán 8

Bài 45, 46, 47, 48 trang 56, 57 SBT Toán 8 tập 2:  Giải các bất phương trình và biểu diễn tập nghiệm trên trục số

Bài 4 Bất phương trình bậc nhất một ẩn Sách bài tập Toán 8 tập 2. Giải bài 45, 46, 47, 48 trang 56, 57 Sách bài tập Toán 8 tập 2. Câu 44: Giải thích sự tương đương…

Câu 44: Giải thích sự tương đương:

a. \(2x < 3 \Leftrightarrow 3x < 4,5\)

b. \(x – 5 < 12 \Leftrightarrow x + 5 < 22\)

c. \( – 3x < 9 \Leftrightarrow 6x >  – 18\)

a. Nhân hai vế của bất phương trình \(2x < 3\) với 1,5

b. Cộng hai vế của bất phương trình x – 5 < 12 với 10

c. Nhân hai vế của bất phương trình – 3x < 9 với -2


Câu 45: Cho hình vẽ sau (h.1)

 

Bạn An cho rằng, hình vẽ đó là biểu diễn tập nghiệm của bất phương trình 2x ≤ 16, còn bạn Bình lại khẳng định hình vẽ đó biểu diễn tập nghiệm của bất phương trình x + 2 ≤ 10.

Theo em bạn nào đúng ?

Ta có:

\(\eqalign{  & 2x \le 16 \Leftrightarrow x \le 8  \cr  & x + 2 \le 10 \Leftrightarrow x \le 8 \cr} \)

Như vậy cả hai bạn đều phát biểu đúng.


Câu 46: Giải các bất phương trình và biểu diễn tập nghiệm của chúng trên trục số:

Advertisements (Quảng cáo)

a. \(2x – 4 < 0\)

b. \(3x + 9 > 0\)

c. \( – x + 3 < 0\)

d. \( – 3x + 12 > 0\)

a. Ta có:

\(2x – 4 < 0 \Leftrightarrow 2x < 4 \Leftrightarrow x < 2\)

 

b. Ta có:

\(3x + 9 > 0 \Leftrightarrow 3x >  – 9 \Leftrightarrow x >  – 3\)

Advertisements (Quảng cáo)

 

c. Ta có:

\( – x + 3 < 0 \Leftrightarrow  – x <  – 3 \Leftrightarrow x > 3\)

 

d. Ta có:

\( – 3x + 12 > 0 \Leftrightarrow  – 3x >  – 12 \Leftrightarrow x < 4\)


Câu 47: Giải các bất phương trình:

a. \(3x + 2 > 8\)

b. \(4x – 5 < 7\)

c. \( – 2x + 1 < 7\)

d. \(13 – 3x >  – 2\)

a. Ta có:

\(3x + 2 > 8 \Leftrightarrow 3x > 8 – 2 \Leftrightarrow 3x > 6 \Leftrightarrow x > 2\)

 Vậy tập nghiệm của bất phương trình là: \(\left\{ {x|x > 2} \right\}\)

b. Ta có:

\(4x – 5 < 7 \Leftrightarrow 4x < 7 + 5 \Leftrightarrow 4x < 12 \Leftrightarrow x < 3\)

 Vậy tập nghiệm của bất phương trình là: \(\left\{ {x|x < 3} \right\}\)

c. Ta có:

\( – 2x + 1 < 7 \Leftrightarrow  – 2x < 7 – 1 \Leftrightarrow  – 2x < 6 \Leftrightarrow x >  – 3\)

 Vậy tập nghiệm của bất phương trình là: \(\left\{ {x|x >  – 3} \right\}\)

d. Ta có:

\(13 – 3x >  – 2 \Leftrightarrow  – 3x >  – 2 – 13 \Leftrightarrow  – 3x >  – 15 \Leftrightarrow x < 5\)

 Vậy tập nghiệm của bất phương trình là: \(\left\{ {x|x < 5} \right\}\)

Advertisements (Quảng cáo)