Bài 3.61: Trong không gian Oxyz, cho hai điểm A(2; 0; 0), B(0; 0; 8) và điểm C sao cho \(\overrightarrow {AC} = (0;6;0)\). Tính khoảng cách từ trung điểm I của BC đến đường thẳng OA.
\(\left\{ {\matrix{{\overrightarrow {AC} = (0;6;0)} \cr {A(2;0;0)} \cr} } \right. \Rightarrow C(2;6;0)\)
Do đó I(1; 3; 4)
Phương trình mặt phẳng \((\alpha )\) qua I và vuông góc với OA là: x – 1 = 0 ,\((\alpha )\) cắt OA tại K(1; 0; 0)
Khoảng cách từ I đến OA là:
Advertisements (Quảng cáo)
\(IK = \sqrt {{{(1 – 1)}^2} + {{(0 – 3)}^2} + {{(0 – 4)}^2}} = 5\)
Bài 3.62: Cho hình lập phương ABCD.A1B1C1D1 có cạnh bằng 1. Gọi M, N, P lần lượt là trung điểm của các cạnh BB1, CD. A1D1. Tính khoảng cách và góc giữa hai đường thẳng MP và C1N.
Advertisements (Quảng cáo)
Ta chọn hệ trục tọa độ như sau: B1 là gốc tọa độ, \(\overrightarrow {{B_1}{A_1}} = \overrightarrow i ,\overrightarrow {{B_1}{C_1}} = \overrightarrow j ,\overrightarrow {{B_1}B} = \overrightarrow k \). Trong hệ trục vừa chọn, ta có B1(0; 0; 0), B(0; 0; 1), A1(1; 0; 0), D1(1; 1; 0), C(0; 1; 1), D(1; 1; 1), C1(0; 1; 0).
Suy ra \(M(0;0;{1 \over 2}),P(1;{1 \over 2};0),N({1 \over 2};1;1)\)
Ta có \(\overrightarrow {MP} = (1;{1 \over 2}; – {1 \over 2});\overrightarrow {{C_1}N} = ({1 \over 2};0;1)\)
Gọi \((\alpha )\) là mặt phẳng chứa C1N và song song với MP. \((\alpha )\) có vecto pháp tuyến là \(\overrightarrow n = ({1 \over 2}; – {5 \over 4}; – {1 \over 4})\) hay \(\overrightarrow n ‘ = (2; – 5; – 1)\)
Phương trình của \((\alpha )\) là \( 2x – 5(y – 1) – z = 0\) hay \(2x – 5y – z + 5 = 0\)
Ta có \(d(MP,{C_1}N) = d(M,(\alpha )) = {{| – {1 \over 2} + 5|} \over {\sqrt {25 + 4 + 1} }} = {9 \over {2\sqrt {30} }}\)
Ta có: \(\cos (\widehat {MP,{C_1}N}) = {{|\overrightarrow {MP} .\overrightarrow {{C_1}N} |} \over {|\overrightarrow {MP} |.|\overrightarrow {{C_1}N} |}} = 0\) . Vậy \((\widehat {MP,{C_1}N}) = {90^0}\).