Bài 3.25: Cho hình lập phương ABCD. A’B’C’D’ có cạnh bằng 1. Dùng phương pháp tọa độ để:
a) Chứng minh hai mặt phẳng (AB’D’) và (BC’D) song song:
b) Tính khoảng cách giữa hai mặt phẳng đó.
Ta chọn hệ trục tọa độ sao cho các đỉnh của hình lập phương có tọa độ là:
A(0; 0; 0) , B(1;0; 0) , D(0; 1; 0)
B’(1; 0 ; 1) , D’(0; 1; 1) , C’ (1; 1; 1)
Advertisements (Quảng cáo)
a) Phương trình của hai mặt phẳng (AB’D’) và (BC’D) là :
x + y – z = 0 và x + y – z – 1 = 0
Ta có: \({1 \over 1} = {1 \over 1} = {{ – 1} \over { – 1}} \ne {0 \over { – 1}}\) . Vậy (AB’D’) // (BC’D)
b) \(d((AB’D’),(BC’D)) = d(A,(BC’D)) = {1 \over {\sqrt 3 }}\)
Advertisements (Quảng cáo)
Bài 3.26: Lập phương trình của mặt phẳng \((\alpha )\) đi qua điểm M(3; -1; -5) đồng thời vuông góc với hai mặt phẳng:
\((\beta )\): 3x – 2y + 2z + 7 = 0
\((\gamma )\): 5x – 4y + 3z + 1 = 0
Mặt phẳng \((\alpha )\) vuông góc với hai mặt phẳng \((\beta )\) và \((\gamma )\), do đó hai vecto có giá song song hoặc nằm trên \((\alpha )\) là: \(\overrightarrow {{n_\beta }} = (3; – 2;2)\) và \(\overrightarrow {{n_\gamma }} = (5; – 4;3)\).
Suy ra \(\overrightarrow {{n_\alpha }} = \overrightarrow {{n_\beta }} \wedge \overrightarrow {{n_\gamma }} = (2;1; – 2)\)
Mặt khác \((\alpha )\) đi qua điểm M(3; -1; -5) và có vecto pháp tuyến là \(\overrightarrow {{n_\alpha }} \) . Vậy phương trình của \((\alpha )\) là: 2(x – 3) + 1(y + 1) – 2(z + 5) = 0 hay 2x + y – 2z – 15 = 0.
Bài 3.27: Cho điểm A(2; 3; 4). Hãy viết phương trình của mặt phẳng \((\alpha )\) đi qua các hình chiếu của điểm A trên các trục tọa độ.
Hình chiếu của điểm A(2; 3; 4) lên các trục Ox, Oy, Oz lần lượt là B(2; 0; 0), C(0; 3; 0), D(0; 0 ; 4). Mặt phẳng \((\alpha )\) đi qua ba điểm B, C, D nên \((\alpha )\) có phương trình theo đoạn chắn là: \({x \over 2} + {y \over 3} + {z \over 4} = 1\) hay 6x + 4y + 3z – 12 = 0