Câu 29: Giải các hệ bất phương trình
a)
\(\left\{ \matrix{
{{5x + 2} \over 3} \ge 4 – x \hfill \cr
{{6 – 5x} \over {13}} < 3x + 1 \hfill \cr} \right.\)
b)
\(\left\{ \matrix{
{(1 – x)^2} > 5 + 3x + {x^2} \hfill \cr
{(x + 2)^3} < {x^3} + 6{x^2} – 7x – 5 \hfill \cr} \right.\)
c)
\(\left\{ \matrix{
{{4x – 5} \over 7}< x + 3 \hfill \cr
{{3x + 8} \over 4} > 2x – 5 \hfill \cr} \right.\)
d)
\(\left\{ \matrix{
x – 1 \le 2x – 3 \hfill \cr
3x < x + 5 \hfill \cr
{{5 – 3x} \over 2} \le x – 3 \hfill \cr} \right.\)
Đáp án
a) Ta có:
\(\eqalign{
& \left\{ \matrix{
{{5x + 2} \over 3} \ge 4 – x \hfill \cr
{{6 – 5x} \over {13}} < 3x + 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
5x + 2 \ge 12 – 3x \hfill \cr
6 – 5x < 39x + 13 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
8x \ge 10 \hfill \cr
44x > – 7 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge {5 \over 4} \hfill \cr
x > – {7 \over {44}} \hfill \cr} \right. \Leftrightarrow x \ge {5 \over 4} \cr} \)
Vậy \(S = {\rm{[}}{5 \over 4}; + \infty )\)
b) Ta có:
\(\eqalign{
& \left\{ \matrix{
{(1 – x)^2} > 5 + 3x + {x^2} \hfill \cr
{(x + 2)^3} < {x^3} + 6{x^2} – 7x – 5 \hfill \cr} \right. \cr&\Leftrightarrow \left\{ \matrix{
1 – 2x + {x^2} > 5 + 3x + {x^2} \hfill \cr
{x^3} + 6{x^2} + 12x + 8 < {x^3} + 6{x^2} – 7x – 5 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
5x < – 4 \hfill \cr
19x < – 13 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x < – {4 \over 5} \hfill \cr
x < – {{13} \over {19}} \hfill \cr} \right. \Leftrightarrow x < – {4 \over 5} \cr} \)
Vậy \(S = ( – \infty ; – {4 \over 5})\)
c) Ta có:
Advertisements (Quảng cáo)
\(\eqalign{
& \left\{ \matrix{
{{4x – 5} \over 7} < x + 3 \hfill \cr
{{3x + 8} \over 4} > 2x – 5 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
4x – 5 < 7x + 21 \hfill \cr
3x + 8 > 8x – 20 \hfill \cr} \right. \cr&\Leftrightarrow \left\{ \matrix{
3x > – 26 \hfill \cr
5x < 28 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
x > – {{26} \over 3} \hfill \cr
x < {{28} \over 5} \hfill \cr} \right. \Leftrightarrow – {{26} \over 3} < x < {{28} \over 5} \cr} \)
Vậy \(S = ( – {{26} \over 3};{{28} \over 5})\)
d) Ta có:
\(\left\{ \matrix{
x – 1 \le 2x – 3 \hfill \cr
3x < x + 5 \hfill \cr
{{5 – 3x} \over 2} \le x – 3 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge 2 \hfill \cr
2x < 5 \hfill \cr
5 – 3x \le 2x – 6 \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{
x \ge 2 \hfill \cr
x < {5 \over 2} \hfill \cr
5x \ge 11 \hfill \cr} \right.\Leftrightarrow {{11} \over 5} \le x <{5 \over 2}\)
Vậy \(S = {\rm{[}}{{11} \over 5};{5 \over 2})\)
Câu 30: Tìm các giá trị của m để mỗi hệ bất phương trình sau có nghiệm
a)
\(\left\{ \matrix{
3x – 2 > – 4x + 5 \hfill \cr
3x + m + 2 < 0 \hfill \cr} \right.\)
b)
Advertisements (Quảng cáo)
\(\left\{ \matrix{
x – 2 \le 0 \hfill \cr
m + x > 1 \hfill \cr} \right.\)
Đáp án
a) Ta có:
\(\left\{ \matrix{
3x – 2 > – 4x + 5 \hfill \cr
3x + m + 2 < 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x > 1 \hfill \cr
x < – {{m + 2} \over 3} \hfill \cr} \right.\)
Hệ bất phương trình có nghiệm khi và chỉ khi:
\( – {{m + 2} \over 3} > 1 \Leftrightarrow m + 2 < – 3 \Leftrightarrow m < – 5\)
Khi đó tập nghiệm \(S = (1, – {{m + 2} \over 3})\)
b) Ta có:
\(\left\{ \matrix{
x – 2 \le 0 \hfill \cr
m + x > 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \le 2 \hfill \cr
x > 1 – m \hfill \cr} \right.\)
Hệ bất phương trình có nghiệm khi và chỉ khi \(1- m < 2 ⇔ m > -1\)
Khi đó, tập nghiệm \(S = (1 – m; 2]\)
Câu 31: Tìm các giá trị của m để mỗi hệ bất phương trình sau vô nghiệm
a)
\(\left\{ \matrix{
2x + 7 < 8x – 1 \hfill \cr
– 2x + m + 5 \ge 0 \hfill \cr} \right.\)
b)
\(\left\{ \matrix{
{(x – 3)^2} \ge {x^2} + 7x + 1 \hfill \cr
2m – 5x \le 8 \hfill \cr} \right.\)
a) Ta có:
\(\left\{ \matrix{
2x + 7 < 8x – 1 \hfill \cr
– 2x + m + 5 \ge 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x > {4 \over 3} \hfill \cr
x \le {{m + 5} \over 2} \hfill \cr} \right.\)
Hệ bất phương trình vô nghiệm khi và chỉ khi:
\(\eqalign{
& {{m + 5} \over 2} \le {4 \over 3} \cr
& \Leftrightarrow 3m + 15 \le 8 \Leftrightarrow 3m \le – 7 \Leftrightarrow m \le – {7 \over 3} \cr} \)
b) Ta có:
\(\eqalign{
& \left\{ \matrix{
{(x – 3)^2} \ge {x^2} + 7x + 1 \hfill \cr
2m – 5x \le 8 \hfill \cr} \right.\cr& \Leftrightarrow \left\{ \matrix{
{x^2} – 6x + 9 \ge {x^2} + 7x + 1 \hfill \cr
5x \ge 2m – 8 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
x \le {8 \over {13}} \hfill \cr
x \ge {{2m – 8} \over 5} \hfill \cr} \right. \cr} \)
Hệ bất phương trình vô nghiệm:
\(\eqalign{
& \Leftrightarrow {{2m – 8} \over 5} > {8 \over {13}} \Leftrightarrow 26m – 104 > 40\cr& \Leftrightarrow 26m > 144 \cr
& \Leftrightarrow m > {{72} \over {13}} \cr} \)