Bài 18: Cho hình bình hành \(ABCD\). Chứng minh rằng \(\overrightarrow {DA} – \overrightarrow {DB} + \overrightarrow {DC} = \overrightarrow 0 \).
Ta có \(\overrightarrow {DA} – \overrightarrow {DB} = \overrightarrow {BA} \) mà \(\overrightarrow {BA} = \overrightarrow {CD} \) suy ra \(\overrightarrow {DA} – \overrightarrow {DB} + \overrightarrow {DC} = \overrightarrow {CD} + \overrightarrow {DC} = \overrightarrow 0 .\)
Bài 19: Chứng minh rằng \(\overrightarrow {AB} = \overrightarrow {CD} \) khi và chỉ khi trung điểm của hai đoạn thẳng \(AD\) và \(BC\) trùng nhau.
Giả sử \(\overrightarrow {AB} = \overrightarrow {CD} \) và \(M, N\) lần lượt là trung điểm của \(AD,BC\).
Ta có \(\overrightarrow {MA} + \overrightarrow {MD} = \overrightarrow 0 ,\,\overrightarrow {NB} + \overrightarrow {NC} = \overrightarrow 0 \) và \(\overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AB} + \overrightarrow {BN} ,\,\overrightarrow {MN} = \overrightarrow {MD} + \overrightarrow {DC} + \overrightarrow {CN} \) suy ra
Advertisements (Quảng cáo)
\(\eqalign{
& 2\overrightarrow {MN} = \overrightarrow {MN} + \overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AB} + \overrightarrow {BN} + \overrightarrow {MD} + \overrightarrow {DC} + \overrightarrow {CN} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {\overrightarrow {MA} + \overrightarrow {MD} } \right) + \left( {\overrightarrow {BN} + \overrightarrow {CN} } \right) + \overrightarrow {AB} + \overrightarrow {DC} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AB} + \overrightarrow {DC} = \overrightarrow {AB} – \overrightarrow {CD} \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow 0 \cr} \)
Do đó, \(\overrightarrow {MN} = \overrightarrow 0 \) , tức là \(M \equiv N\).
Vậy trung điểm của hai đoạn thẳng \(AD\) và \(BC\) trùng nhau.
Ngược lại, ta giả sử trung điểm của hai đoạn thẳng \(AD\) và \(BC\) trùng nhau, suy ra
Advertisements (Quảng cáo)
\(\overrightarrow {MA} + \overrightarrow {MD} = \overrightarrow 0 ,\,\overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow 0 \)
Suy ra \(\overrightarrow {AB} = \overrightarrow {AM} + \overrightarrow {MB} = \overrightarrow {CM} + \overrightarrow {MD} = \overrightarrow {CD} \).
Bài 20: Cho sáu điểm \(A, B, C, D, E, F\). Chứng minh rằng
\(\overrightarrow {AD} + \overrightarrow {BE} + \overrightarrow {CF} = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} = \overrightarrow {AF} + \overrightarrow {BD} + \overrightarrow {CE} \).
Theo quy tắc ba điểm, ta có
\(\eqalign{
& \overrightarrow {AD} + \overrightarrow {BE} + \overrightarrow {CF} = \left( {\overrightarrow {AE} + \overrightarrow {ED} } \right) + \left( {\overrightarrow {BF} + \overrightarrow {FE} } \right) + \left( {\overrightarrow {CD} + \overrightarrow {DF} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} + \left( {\overrightarrow {FE} + \overrightarrow {ED} + \overrightarrow {DF} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} + \left( {\overrightarrow {FD} + \overrightarrow {DF} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} \cr} \)
Tương tự, ta cũng có
\(\eqalign{
& \overrightarrow {AD} + \overrightarrow {BE} + \overrightarrow {CF} = \left( {\overrightarrow {AF} + \overrightarrow {FD} } \right) + \left( {\overrightarrow {BD} + \overrightarrow {DE} } \right) + \left( {\overrightarrow {CE} + \overrightarrow {EF} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AF} + \overrightarrow {BD} + \overrightarrow {CE} + \left( {\overrightarrow {FD} + \overrightarrow {DE} + \overrightarrow {EF} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AF} + \overrightarrow {BD} + \overrightarrow {CE} + \left( {\overrightarrow {FE} + \overrightarrow {EF} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {AF} + \overrightarrow {BD} + \overrightarrow {CE} \cr} \)
Vậy ta có \(\overrightarrow {AD} + \overrightarrow {BE} + \overrightarrow {CF} = \overrightarrow {AE} + \overrightarrow {BF} + \overrightarrow {CD} = \overrightarrow {AF} + \overrightarrow {BD} + \overrightarrow {CE} \)