Trang Chủ Sách bài tập lớp 7 SBT Toán 7

Bài 61, 62, 63 trang 48 SBT Toán lớp 7 tập 2: Tìm vị trí của điểm M trên đường thẳng a để MA + MB là nhỏ nhất

Bài 7 Tính chất trung trực của một đoạn thẳng SBT Toán lớp 7 tập 2. Giải bài 61, 62, 63 trang 48 Sách Bài Tập Toán lớp 7 tập 2. Câu 61: Cho góc xOy bằng 60°, điểm A nằm trong góc xOy. Vẽ điểm B sao cho Ox là đường trung trực của AB. Vẽ điểm C sao cho Oy là đường trung trực của AC…

Câu 61: Cho góc xOy bằng 60°, điểm A nằm trong góc xOy. Vẽ điểm B sao cho Ox là đường trung trực của AB. Vẽ điểm C sao cho Oy là đường trung trực của AC.

a) Chứng minh rằng OB = OC

b) Tính số đo góc BOC.

a) Ox là đường trung trực của AB.

ð  OB = OA (tính chất đường trung trực)             (1)

Oy là đường trung trực của AC.

ð  OA = OC (tính chất đường trung trực)             (2)

Từ (1) và (2) suy ra:  OB = OC.

b) ∆OAB cân tại O.

Ox là đường trung trực của AB.

Nên Ox là đường phân giác của \(\widehat {AOB}\) (tính chất tam giác cân)

\( \Rightarrow \widehat {{O_3}} = \widehat {{O_4}}\)

∆OAC cân tại O

Oy là đường trung trực của AC.

Advertisements (Quảng cáo)

Nên Oy là đường phân giác của \(\widehat {AOC}\) (tính chất tam giác cân)

\( \Rightarrow \widehat {{O_1}} = \widehat {{O_2}}\)

Suy ra: \(\widehat {{O_1}} + \widehat {{O_3}} = \widehat {{O_2}} + \widehat {{O_4}}\)

\(\widehat {BOC} = \widehat {{O_1}} + \widehat {{O_2}} + \widehat {{O_3}} + \widehat {{O_4}} \)

            \(= 2\left( {\widehat {{O_1}} + \widehat {{O_3}}} \right) \)

            \(= 2\widehat {xOy} \)

            \(= 2.60^\circ  = 120^\circ \)

Câu 62: Cho hình bên, M là một điểm tùy ý nằm trên đường thẳng a. Vẽ điểm C sao cho a là đường trung trực của AC.

a) Hãy so sánh MA + MB với BC.

Advertisements (Quảng cáo)

b) Tìm vị trí của điểm M trên đường thẳng a để MA + MB là nhỏ nhất.

a) Gọi N là giao điểm của BC với đường thẳng a.

Nếu M # N

Nối MC

a là đường trung trực của AC

M ∈ a

\( \Rightarrow \) MA = MC  (tính chất đường trung trực)                   (1)

Trong ∆MBC ta có:

      BC < MB + MC  (bất đẳng thức tam giác)             (2)

Thay (1) vào (2)  ta có:   BC  < MA + MB

Nếu M trùng với N, ta nối NA

             NA = NC  (tính chất đường trung trực)

             MA + MB  = NA + NB = NC + NB = BC

Vậy:  MA +  MB ≥ BC

b) Theo chứng minh A ta có:  Khi M trùng với N.

             MA + MB = BC là bé nhất

Vậy M là giao điểm của BC với đường thẳng a thì   MA + MB bé nhất.

Câu 63: Hai nhà máy được xây dựng tại hai điểm A và B nằm về một phía của khúc sông thẳng. Tìm trên bờ sông một địa điểm C để xây một trạm bơm sao cho tổng chiều dài đường ống dẫn nước từ C đến A và đến B là nhỏ nhất.

Dựng điểm A’ sao cho bờ sông là trung trực của AA’

Nối A’B cắt bờ sông tại điểm C.

Theo chứng minh của bài 62, điểm C là điểm cần tìm có khoảng cách CA + CB ngắn nhất.

Advertisements (Quảng cáo)