Trang Chủ Lớp 7 Đề kiểm tra 15 phút lớp 7

Kiểm tra 15 phút môn Toán lớp 7 chương 1 phần Hình học: Chứng tỏ tt’ // Oy?

CHIA SẺ
Cho góc \(\widehat {xOy} = {120^o}\). Lấy điểm A trên tia Ox. Trên cùng nửa mặt phẳng chứa tia Oy bờ là Ox, vẽ tia At sao cho \(\widehat {OAt} = {60^o}\). Gọ At’ là tia đối của tia At; Chứng tỏ tt’ // Oy … trong Kiểm tra 15 phút môn Toán lớp 7 chương 1 phần Hình học. Xem Đề và đáp án đầy đủ phía dưới đây

Cho góc \(\widehat {xOy} = {120^o}\). Lấy điểm A trên tia Ox. Trên cùng nửa mặt phẳng chứa tia Oy bờ là Ox, vẽ tia At sao cho \(\widehat {OAt} = {60^o}\). Gọ At’ là tia đối của tia At.

a) Chứng tỏ tt’ // Oy.

b) Gọi Om, An theo thứ tự là các tia phân giác của các góc \(\widehat {xOy}\) và \(\widehat {xAt}\). Chứng tỏ Om//An.


a) Kẻ Oy’ là tia đối của tia Oy, ta có

\(\widehat {xAn} = \widehat {xOm} = {60^o}\) \(\widehat {xOy} + \widehat {xOy’} = {180^o}\) (kề bù) \( \Rightarrow \widehat {xOy’} = {180^o} – \widehat {xOy’}\)

\( \Rightarrow \widehat {xOy’} = {180^o} – {120^o} = {60^o}.\)

Ta có \( \Rightarrow \widehat {xOy’} = \widehat {OAt} = {60^o}\). Hai góc này ở vị trí so le trong.

Do đó tt’ // Oy.

b) Ta có \(\widehat {xAt} + \widehat {OAt} = {180^o}\)(kề bù)

\( \Rightarrow \widehat {xAt} = {180^o} – \widehat {OAt} \)\(\,= {180^o} – {60^o} = {120^o},\)

Lại có An là tia phân giác của \(\widehat {xAt}\) nên

\(\widehat {xAn} = \widehat {tAn} = \dfrac{1 }{2}\widehat {xAt} = \dfrac{1 }{2}{.120^o} = {60^o}.\)

Tương tự Om là phân giác của \(\widehat {xOy}\) nên

\(\widehat {xOm} = \widehat {yOm} = \dfrac{1 }{ 2}\widehat {xOy} \)\(\,= \dfrac{1}{ 2}{.120^o} = {60^o}.\)

Khi đó \(\widehat {xAn} = \widehat {xOm} = {60^o}\). Hai góc này ở vị trí đồng vị. Do đó Om // An.