Trang Chủ Lớp 7 Đề kiểm tra 15 phút lớp 7

Kiểm tra 15 phút môn Toán Chương 2 Hình học 7: Chứng minh I là trung điểm của DE

CHIA SẺ
Cho tam giác ABC cân tại A. Trên AB lấy D. Trên tia đối của tia CA. Lấy điểm E sao cho CE = BD, DE cắt BC tại I. Trên tia đối của tia BC lấy F sao cho BF = CI. Chứng minh \(\Delta BFD = \Delta CIE\) … trong Kiểm tra 15 phút môn Toán Chương 2 Hình học 7. Xem Đề và đáp án đầy đủ phía dưới đây

Cho tam giác ABC cân tại A. Trên AB lấy D. Trên tia đối của tia CA. Lấy điểm E sao cho CE = BD, DE cắt BC tại I. Trên tia đối của tia BC lấy F sao cho BF = CI. Chứng minh:

a) \(\Delta BFD = \Delta CIE\)

b) \(\Delta DFI\) cân.

c) I là trung điểm của DE.


a) \(\Delta ABC\) cân tại A \( \Rightarrow \widehat B = \widehat C \)

\(\Rightarrow \widehat {DBF} = \widehat {ECI}\)  (1) (cùng bù với \(\widehat B = \widehat C\))

Xét \(\Delta BFD \) và \( \Delta CIE\) có:

+) \(\widehat {DBF} = \widehat {ECI}\)

+) \(BD = CE\) (giả thiết)

+) \(BF = CI\) (giả thiết).

Vậy \(\Delta BFD = \Delta CIE\) (c.g.c).

b) Ta có \(\widehat {{I_1}} = \widehat {{I_2}}\) (đối đỉnh), mà \(\widehat {{I_2}} = \widehat F\) (chứng minh trên) \( \Rightarrow \widehat {{I_1}} = \widehat F\)

Vậy tam giác DFI cân.

c) Tam giác DFI cân (chứng minh trên)

\( \Rightarrow FD = ID\). Lại có \(\Delta BFD = \Delta CIE\) (chứng minh trên)

\( \Rightarrow FD = IE\).

Do đó \(ID = IE\) hay I là trung điểm của DE.