Bài 5: Tính xác suất sao cho trong 13 con bài tú lơ khơ được chia ngẫu nhiên cho bạn Bình có 4 con pích, 3 con rô, 3 con cơ và 3 con nhép.
Số cách rút ra 13 con bài là \(C_{52}^{13}\). Như vậy \(n\left( \Omega \right) = C_{52}^{13}\)
Kí hiệuA : “Trong 13 con bài có 4 con pích, 3 con rô, 3 con cơ và 3 con nhép”.
Ta có \(n\left( A \right) = C_{13}^4.C_9^3.C_6^3 = {{13!} \over {4!{{\left( {3!} \right)}^3}}}\)
Vậy \(P\left( A \right) = {{13!} \over {4!{{\left( {3!} \right)}^3}.C_{52}^{13}}} \approx 0,000002\)
Bài 6: Giả sử A và B là hai biến cố \({{P\left( {A \cup B} \right)} \over {P\left( A \right) + P\left( B \right)}} = a\). Chứng minh rằng
a) \({{P\left( {A \cap B} \right)} \over {P\left( A \right) + P\left( B \right)}} = 1 – a;\)
b) \({1 \over 2} \le a \le 1.\)
a) Vì \(P\left( {A \cap B} \right) = P\left( A \right) + P\left( B \right) – P\left( {A \cup B} \right)\) nên
\({{P\left( {A \cap B} \right)} \over {P\left( A \right) + P\left( B \right)}} = {{P\left( A \right) + P\left( B \right) – P\left( {A \cup B} \right)} \over {P\left( A \right) + P\left( B \right)}} = 1 – a.\)
b) Vì \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) – P\left( {A \cap B} \right) \le P\left( A \right) + P\left( B \right)\)
Advertisements (Quảng cáo)
Nên \(a = {{P\left( {A \cup B} \right)} \over {P\left( A \right) + P\left( B \right)}} \le 1\,\,\,\,\left( 1 \right)\)
Mặt khác, \(2P\left( {A \cup B} \right) = P\left( {A \cup B} \right) + P\left( {A \cup B} \right) \ge P\left( A \right) + P\left( B \right)\)
Vậy \(a = {{P\left( {A \cup B} \right)} \over {P\left( A \right) + P\left( B \right)}} \ge {1 \over 2}\)
Kết hợp với (1), ta có \({1 \over 2} \le a \le 1\)
Bài 7: Hai hộp chứa các quả cầu. Hộp thứ nhất chứa 3 quả đỏ và 2 quả xanh, hộp thứ hai chứa 4 quả đỏ và 6 quả xanh. Lấy ngẫu nhiên từ mỗi hộp một quả. Tính xác suất sao cho
a) Cả hai quả đều đỏ ;
b) Hai quả cùng màu ;
c) Hai quả khác màu.
Advertisements (Quảng cáo)
Kí hiệu A: “Quả lấy từ hộp thứ nhất màuđỏ” ;
B: “Quả lấy từ hộp thứ hai màuđỏ”.
Ta thấy A và B độc lập.
a) Cần tính \(P\left( {A \cap B} \right)\).
Ta có: \(P\left( {A \cap B} \right) = P\left( A \right)P\left( B \right) = {3 \over 5}.{4 \over {10}} = 0,24\)
b) Cần tính xác suất của \(C = \left( {A \cap B} \right) \cup \left( {\overline A \cap \overline B } \right)\)
Do tính xung khắc và độc lập của các biến cố, ta có
\(\eqalign{
& P\left( C \right) = P\left( A \right)P\left( B \right) + P\left( {\overline A } \right)P\left( {\overline B } \right) \cr
& {\rm{ }} = {3 \over 5}.{4 \over {10}} + {2 \over 5}.{6 \over {10}} = 0,48. \cr}\)
c) Cần tính \(P\left( {\overline C } \right)\). Ta có \(P\left( {\overline C } \right) = 1 – P\left( C \right) = 1 – 0,48 = 0,52\)
Bài 8: Cho 5 đoạn thẳng với các độ dài 3, 5, 7, 9, 11 Chọn ngẫu nhiên ra ba đoạn thẳng.
a) Mô tả không gian mẫu.
b) Xác định biến cố A: “Ba đoạn thẳng chọn ra tạo thành một tam giác” và tính xác suất của A.
a) Ω gồm \(C_5^3 = 10\) bộ ba đoạn thẳng khác nhau trong số năm đoạn thẳng đã cho.
\(\Omega = \left\{ \matrix{
\left( {3,5,7} \right);\left( {3,7,9} \right);\left( {3,9,11} \right);\left( {5,7,9} \right);\left( {5,7,11} \right); \hfill \cr
\left( {3,5,9} \right);\left( {3,5,11} \right);\left( {3,7,11} \right);\left( {5,9,11} \right);\left( {7,9,11} \right) \hfill \cr} \right\}\)
b) A gồm các bộ có tổng của hai số lớn hơn số còn lại.
\(A = \left\{ \matrix{
\left( {3,5,7} \right);\left( {3,7,9} \right);\left( {3,9,11} \right); \hfill \cr
\left( {5,7,9} \right);\left( {5,7,11} \right);\left( {5,9,11} \right);\left( {7,9,11} \right) \hfill \cr} \right\}\)
Ta có \(n\left( A \right) = 7\)
Vậy \(P\left( A \right) = {{n\left( A \right)} \over {n\left( \Omega \right)}} = {7 \over {10}} = 0,7\)