Trang Chủ Sách bài tập lớp 10 SBT Toán 10

Bài 1.16, 1.17, 1.18, 1.19 trang 23 SBT Hình 10: Cho ba điểm O, A, B không thẳng hàng, Điều kiện Vecto O A + O B nằm trên đường phân giác của góc AOB

Bài 2. Tổng và hiệu của hai vecto – SBT Hình 10: Giải bài 1.16, 1.17, 1.18, 1.19 trang 23 Sách bài tập Toán Hình học 10.  Cho ngũ giác ABCDE. Chứng minh…

Bài 1.16: Cho ngũ giác ABCDE. Chứng minh \(\overrightarrow {AB}  + \overrightarrow {BC}  + \overrightarrow {CD}  = \overrightarrow {AE}  – \overrightarrow {DE} \)

\(\eqalign{
& \overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} = \overrightarrow {AE} – \overrightarrow {DE} \cr
& \Leftrightarrow \overrightarrow {AC} + \overrightarrow {CD} = \overrightarrow {AE} + \overrightarrow {ED} \cr
& \Leftrightarrow \overrightarrow {AD} = \overrightarrow {AD} \cr} \)


Bài 1.17: Cho ba điểm O, A, B không thẳng hàng. Với điều kiện nào thì vec tơ \(\overrightarrow {OA}  + \overrightarrow {OB} \) nằm trên đường phân giác của góc \(\widehat {AOB}\)?

\(\overrightarrow {OA}  + \overrightarrow {OB}  = \overrightarrow {OC} \) trong đó OACB là hình bình hành. OC là phân giác góc \(\widehat {AOB}\) khi và chỉ khi OACB là hình thoi, tức là OA = OB.

Bài 1.18: Cho hai lực \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \) có điểm đặt O và tạo với nhau góc \({60^0}\). Tìm cường độ tổng hợp lực của hai lực ấy biết rằng cường độ của hai lực \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \) đều là 100N.

(h.1.43)

Advertisements (Quảng cáo)

\(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  = \overrightarrow F  = \overrightarrow {OA} \)

\(\left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right| = OA = 100\sqrt 3 \)

Vậy cường độ của hợp lực là \(100\sqrt 3 N\)


Bài 1.19: Cho hình bình hành ABCD. Gọi O là một điểm bất kì trên đường chéo AC. Qua O kẻ các đường thẳng song song với các cạnh của hình bình hành. Các đường thẳng này cắt AB và DC lần lượt tại M và N, cắt AD và BC lần lượt tại E và F. Chứng minh rằng:

a) \(\overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow {OB}  – \overrightarrow {OD} \)

b) \(\overrightarrow {BD}  = \overrightarrow {ME}  + \overrightarrow {FN} \)

Advertisements (Quảng cáo)

(Xem h.1.44)

a) \(\overrightarrow {AB}  = \overrightarrow {OB}  – \overrightarrow {OA} \)

\(\overrightarrow {DC}  = \overrightarrow {OC}  – \overrightarrow {OD} \)

Vì \(\overrightarrow {AB}  = \overrightarrow {DC} \) nên ta có \(\overrightarrow {OB}  – \overrightarrow {OA}  = \overrightarrow {OC}  – \overrightarrow {OD} \)

Vậy \(\overrightarrow {OB}  + \overrightarrow {OD}  = \overrightarrow {OA}  + \overrightarrow {OC} \)

b) Tứ giác AMOE là hình bình hành nên ta có \(\overrightarrow {ME}  = \overrightarrow {MA}  + \overrightarrow {MO} (1)\)

Tứ giác OFCN là hình bình hành nên ta có \(\overrightarrow {FN}  = \overrightarrow {FO}  + \overrightarrow {FC} (2)\)

Từ (1) và (2) suy ra:

\(\overrightarrow {ME}  + \overrightarrow {EN}  = \overrightarrow {MA}  + \overrightarrow {MO}  + \overrightarrow {FO}  + \overrightarrow {FC}\)

\( = (\overrightarrow {MA}  + \overrightarrow {FO} ) + (\overrightarrow {MO}  + \overrightarrow {FC} ) = \overrightarrow {BA}  + \overrightarrow {BC}  = \overrightarrow {BD} \)

(Vì \(\overrightarrow {FO}  = \overrightarrow {BM} ,\overrightarrow {MO}  = \overrightarrow {BF} \))

Vậy \(\overrightarrow {BD}  = \overrightarrow {ME}  + \overrightarrow {FN} \)

Advertisements (Quảng cáo)