Trang Chủ Sách bài tập lớp 8 SBT Toán 8

Bài 7, 8, 9, 10 trang 80 SBT Toán 8 tập 1: Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn tổng hai cạnh đối

Bài 1 Tứ giác SBT Toán lớp 8. Giải bài 7, 8, 9, 10 trang 80 Sách bài tập Toán 8 tập 1. Câu 7: Cho tứ giác ABCD. Chứng minh rằng…

Câu 7: Cho tứ giác ABCD. Chứng minh rằng tổng hai góc ngoài tại các đỉnh A và C bằng tổng hai góc trong tạo các đỉnh B và D

Gọi \(\widehat {{A_1},}\widehat {{C_1}}\) là góc trong của tứ giác tại đỉnh A và C. \({\widehat A_2},{\widehat C_2}\) là góc ngoài tại đỉnh A và C.

Ta có: \({\widehat A_1} + {\widehat A_2} = {180^0}\) (2 góc kề bù)

\(\Rightarrow {\widehat A_2} = {180^0} – {\widehat A_1}\)

\({\widehat C_1} + {\widehat C_2} = {180^0}\)         (2 góc kề bù)

\( \Rightarrow {\widehat C_2} = {180^0} – {\widehat C_1}\)

Suy ra:

\(\eqalign{
& {\widehat A_2} + {\widehat C_2} = {180^0} – {\widehat A_1} + {180^0} – {\widehat C_1} \cr
& = {360^0} – \left( {{{\widehat A}_1} + {{\widehat C}_1}} \right) \cr}\)        (1)

Trong tứ giác ABCD ta có:

\({\widehat A_1} + \widehat B + {\widehat C_1} + \widehat D = {360^0}\) (tổng các góc của tứ giác)

\(\Rightarrow \widehat B + \widehat D = {360^0} – \left( {{{\widehat A}_1} + {{\widehat C}_1}} \right)\)   (2)

Từ (1) và (2) suy ra: \({\widehat A_2} + {\widehat C_2} = \widehat B + \widehat D\)


Câu 8: Tứ giác ABCD có \(\widehat A = {110^0},\widehat B = {100^0}\). Các tia phân giác của các góc C và D cắt nhau ở E. Các đường phân giác của các góc ngoài tại các đỉnh C và D cắt nhau ở F. Tính \(\widehat {CED},\widehat {CFD}\)

 – Trong tứ giác ABCD, ta có:

\(\eqalign{
& \widehat A + \widehat B + \widehat C + \widehat D = {360^0} \cr
& \Rightarrow \widehat C + \widehat D = {360^0} – \left( {\widehat A + \widehat B} \right) \cr
& = {360^0} – \left( {{{110}^0} + {{100}^0}} \right) = {150^0} \cr
& {\widehat D_1} + {\widehat C_1} = {{\widehat C + \widehat D} \over 2} = {{{{150}^0}} \over 2} = {75^0} \cr} \)

– Trong ∆CED, ta có:

Advertisements (Quảng cáo)

\(\widehat {CED} = {180^0} – \left( {{{\widehat C}_1} + {{\widehat D}_1}} \right) = {180^0} – {75^0} = {105^0}\)

DE ⊥ DF (tính chất tia phân giác của hai góc kề bù)

\(\Rightarrow \widehat {EDF} = {90^0}\)

CE ⊥ CF (tính chất tia phân giác của hai góc kề bù)

\( \Rightarrow \widehat {ECF} = {90^0}\)

Trong tứ giác CEDF, ta có:

\(\eqalign{
& \widehat {DEC} + \widehat {EDF} + \widehat {DFC} + \widehat {ECF} = {360^0} \cr
& \Rightarrow \widehat {DFC} = {360^0} – \left( {\widehat {DEC} + \widehat {EDF} + \widehat {ECF}} \right) \cr
& \widehat {DFC} = {360^0} – \left( {{{105}^0} + {{90}^0} + {{90}^0}} \right) = {75^0} \cr} \)


Câu 9: Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn tổng hai cạnh đối.

Gọi O là giao điểm của hai đường chéo AC và BD.

Trong  ∆OAB, ta có:

OA + OB > AB (bất đẳng thức tam giác) (1)

Advertisements (Quảng cáo)

Trong ∆OCD, ta có:

OC + OD > CD (bất đẳng thức tam giác) (2)

Cộng từng vế (1) và (2):

OA + OB + OC + OD > AB + CD

⇒ AC + BD > AB + CD


Câu 10: Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy.

Đặt độ dài AB = a, BC = b, CD = c, AD = d

Gọi O là giao điểm hai đường chéo AC và BD

Trong ∆OAB, ta có:

OA + OA > a (bất đẳng thức tam giác)          (1)

Trong ∆OCD ta có:

Từ (1) và (2) suy ra:

OA + OB + OC + OD > a + c

Hay AC + BD > a + c  (*)

-Trong ∆OAD ta có: OA + OD > d (bất đẳng thức tam giác) (3)

-Trong ∆OBC ta có: OB + OC > b (bất đẳng thức tam giác) (4)

Từ (3) và (4) suy ra: OA + OD + OB + OC > b + d

⇒ AC + BD > b + d (**)

Từ (*) và (**) suy ra: 2(AC + BD) > a + b + c + d

\(⇒ AC + BD > {{a + b + c + d} \over 2}\)

-Trong ∆ABC ta có: AC < AB + BC =  a + b (bất đẳng thức tam giác)

-Trong ∆ADC ta có: AC < AD + DC = c + d (bất đẳng thức tam giác)

Suy ra: 2AC < a + b + c + d

\(AC < {{a + b + c + d} \over 2}\)   (5)

-Trong ∆ABD ta có: BD < AB + AD = a + d (bất đẳng thức tam giác)

-Trong ∆BCD ta có: BD < BC + CD = b + c (bất đẳng thức tam giác)

Suy ra: 2BD < a + b + c + d

\(BD < {{a + b + c + d} \over 2}\)   (6)

Từ (5) và (6) suy ra: AC + BD < a + b + c + d

Advertisements (Quảng cáo)