Trang Chủ Sách bài tập lớp 8 SBT Toán 8

Bài 136, 137, 138, 139 trang 97 SBT Toán 8 tập 1: Chứng minh rằng ABCD là hình thoi.

Bài 11 Hình thoi SBT Toán lớp 8 tập 1. Giải bài 136, 137, 138, 139 trang 97 Sách bài tập Toán 8 tập 1. Câu 136: Cho hình thoi ABCD. Kẻ hai đường cao AH, AK. Chứng minh rằng AH = AK…

Câu 136: a. Cho hình thoi ABCD. Kẻ hai đường cao AH, AK. Chứng minh rằng AH = AK

b. Hình bình hành ABCD có hai đường cao AH , AK bằng nhau. Chứng minh rằng ABCD là hình thoi.

a. Xét hai tam giác vuông AHB và AKD:

\(\widehat {AHB} = \widehat {AKD} = {90^0}\)

AB = AD (gt)

\(\widehat B = \widehat D\) (tính chất hình thoi)

Do đó: ∆ AHB = ∆ AKD (cạnh huyền, góc nhọn)

⇒ AH = AK

b. Xét hai tam giác vuông AHC và AKC:

\(\widehat {AHC} = \widehat {AKC} = {90^0}\)

AH = AK (gt)

AC cạnh huyền chung

Do đó: ∆ AHC = ∆ AKC (cạnh huyền, góc nhọn)

\( \Rightarrow \widehat {ACH} = \widehat {ACK}\)  hay \(\widehat {ACB} = \widehat {ACD}\)

⇒ CA là tia phân giác \(\widehat {BCD}\)

Hình bình hành ABCD có đường chéo CA là tia phân giác nên là hình thoi.


Câu 137: Hình thoi ABCD có\(\widehat A = {60^0}\). Kẻ hai đường cao BE, BF. Tam giác BEF là tam giác gì ? Vì sao ?

 

Xét hai tam giác vuông BEA và BFC:

Advertisements (Quảng cáo)

\(\widehat {BEA} = \widehat {BFC} = {90^0}\)

\(\widehat A = \widehat C\) (tính chất hình thoi)

BA = BC (gt)

Do đó: ∆ BEA = ∆ BFC (cạnh huyền, góc nhọn)

⇒ BE = BF

⇒ ∆ BEF cân tại B

\( \Rightarrow {\widehat B_1} = {\widehat B_2}\)

⇒ Trong tam giác vuông BEA ta có:

\(\eqalign{  &  \Rightarrow \widehat A + {\widehat B_1} = {90^0} \Rightarrow {\widehat B_1} = {90^0} – \widehat A = {90^0} – {60^0} = {30^0}  \cr  &  \Rightarrow {\widehat B_2} = {\widehat B_1} = {30^0} \cr} \)

\( \Rightarrow \widehat A + \widehat {ABC} = {180^0}\) (hai góc trong cùng phía bù nhau)

\(\eqalign{  &  \Rightarrow \widehat {ABC} – {180^0} – \widehat A = {180^0} – {60^0} = {120^0}  \cr  &  \Rightarrow \widehat {ABC} = {\widehat B_1} + {\widehat B_2} + {\widehat B_3}  \cr  &  \Rightarrow {\widehat B_3} = \widehat {ABC} – \left( {{{\widehat B}_1} + {{\widehat B}_2}} \right)\cr  & = {120^0} – \left( {{{30}^0} + {{30}^0}} \right) = {60^0} \cr} \)

Vậy ∆ BEF đều.


Câu 138: Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Gọi E, F, G, H theo thứ tự là chân các đường vuông góc kẻ từ O đến AB, BC, CD, DA. Tứ giác EFGH là hình gì ? Vì sao?

    

Advertisements (Quảng cáo)

Ta có: AB // CD (gt)

OE ⊥ AB (gt)

⇒ OE ⊥ CD

OG ⊥ CD (gt)

Suy ra: OE trùng với OG nên ba điểm O, E, G thẳng hàng.

BC // AD (gt)

OF ⊥ BC (gt)

⇒ OF ⊥ AD

OH ⊥ AD (gt)

Suy ra : OF trùng với OH nên ba điểm O, H, F thẳng hàng

AC và BD là đường phân giác các góc của hình thoi

OE = OF (tính chất tia phân giác) (1)

OE = OH (tính chất tia phân giác) (2)

OH = OG (tính chất tia phân giác) (3)

Từ (1), (2) và (3) suy ra: OE = OF = OH = OG

Tứ giác EFGH có hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường nên là hình chữ nhật.


Câu 139: Hình thoi ABCD có chu vi bằng 16cm, đường cao AH bằng 2cm. Tính các góc của hình thoi, biết rằng \(\widehat A > \widehat B\)

   

Chứng minh: Chu vi hình thoi bằng 16 (m) nên độ dài một cạnh bằng:

 16 : 4 = 4 (cm)

Gọi M là trung điểm của AD.

Trong tam giác vuông AHD ta có HM là trung tuyến thuộc cạnh huyền

HM = AM = \({1 \over 2}\)AD =\({1 \over 2}\).4 = 2 (cm)

⇒ AM = HM = AM = 2 cm

⇒ ∆ AHM đều

\( \Rightarrow \widehat {HAM} = {60^0}$hay $\widehat {HAD} = {60^0}\)

Trong tam giác vuông AHD ta có: \(\widehat {HAD} + \widehat D = {90^0}\)

\( \Rightarrow \widehat D = {90^0} – \widehat {HAD} = {90^0} – {60^0} = {30^0}\)

\( \Rightarrow \widehat B = \widehat D = {30^0}\) (tính chất hình thoi)

\(\widehat B + \widehat C = {180^0}\) (hai góc trong cùng phía bù nhau)

\( \Rightarrow \widehat C = {180^0} – \widehat B = {180^0} – {30^0} = {150^0}\)

\(\widehat A = \widehat C = {150^0}\) (tính chất hình thoi)

Advertisements (Quảng cáo)