Trang Chủ Sách bài tập lớp 8 SBT Toán 8

Bài 64, 65, 66, 67 trang 87 SBT Toán 8 tập 1: Tam giác ABC có AB < AC...Tứ giác AKCB là hình gì?

Bài 6: Đối xứng trục SBT Toán lớp 8 tập 1. Giải bài 64, 65, 66, 67 trang 87 Sách bài tập Toán 8 tập 1. Câu 64: Cho tam giác ABC cân tại A, đường cao AH. Trên cạnh AB lấy điểm I, trên cạnh AC lấy điểm K sao cho AI = AK…

Câu 64: Cho tam giác ABC cân tại A, đường cao AH. Trên cạnh AB lấy điểm I, trên cạnh AC lấy điểm K sao cho AI = AK. Chứng minh rằng điểm I đối xứng với điểm K qua  AH.

 

∆ ABC cân tại A

AH ⊥ BC (gt)

Suy ra : AH là tia phân giác  \(\widehat A\)

AI = AK (gt)

⇒∆ AIK cân tại A

AH là tia phân giác \(\widehat A\)

nên AH là đường trung trực của IK

Vậy I đối xứng với K qua AH.


Câu 65: Tứ giác ABCD có AB = BC, CD = DA (hình cái diều). Chứng minh rằng điểm A đối xứng với điểm C qua đường thẳng BD.

 

Ta có: BA = BC (gt)

Advertisements (Quảng cáo)

Suy ra b thuộc đường trung trực của AC

DC = DA (gt)

Suy ra D thuộc đường trung trực của AC

mà B ≠ D nên BD là đường trung trực của AC

do đó A đối xứng với C qua trục BD.


Câu 66: Tam giác ABC có AB < AC. Gọi d là đường trung trực của BC. Vẽ điểm K đối xứng với điểm A qua đường thẳng d.

a. Tìm các đoạn thẳng đối xứng với đoạn thẳng AB qua d, đối xứng với đoạn thẳng AC qua d.

b. Tứ giác AKCB là hình gì? Vì sao?

Advertisements (Quảng cáo)

     

a. d là đường trung trực của BC nên B và C đối xứng qua d

K đối xứng với A qua d

nên đoạn thẳng đối xứng với đoạn AB qua d là đoạn KC

Đoạn thẳng đối xứng với đoạn AC qua d là đoạn KB

b. d là đường trung trực của BC (gt)

 ⇒ d ⊥ BC

A và K đối xứng qua d nên d là trung trực của AK

⇒  d ⊥ AK

Suy ra: BC // AK. Tứ giác ABCK là hình thang

AC và KB đối xứng qua d nên AC = BK.

Vậy hình thang ABCK là hình thang cân.


Câu 67: Cho tam giác ABC. Điểm M nằm trên đường phân giác của góc ngoài đỉnh C (M khác C). Chứng minh rằng AC + CB < AM + MB.

 

Trên tia đối tia CB lấy điểm E sao cho CE = CA. Nối MA, ME nên ∆ ACE cân tại C có CM là đường trung trực (tính chất tam giác cân)

⇒ MA = ME ( tính chất đường trung trực)

Ta có:  AB + BC = BC + CE = BE (1)

             MA + MB = MB + ME        (2)

Trong ∆ MBE ta có: BE < MB + ME ( bất đẳng thức tam giác)  (3)

Từ (1), (2) và (3) suy ra: AB + BC = MA + MB

Advertisements (Quảng cáo)