Trang Chủ Sách bài tập lớp 8 SBT Toán 8

Bài 73, 74, 75, 76 trang 89 Sách BT Toán lớp 8 tập 1: Chứng minh rằng DE = BF.

Bài 7 Hình bình hành SBT Toán lớp 8 tập 1. Giải bài 73, 74, 75, 76 trang 89 Sách bài tập Toán 8 tập 1. Câu 73: Các tứ giác ABCD, EFGH vẽ trên giấy kẻ ô vuông ở hình 7 có là hình bình hành không…

Câu 73: Các tứ giác ABCD, EFGH vẽ trên giấy kẻ ô vuông ở hình 7 có là hình bình hành không ?

   

Tứ giác ABCD là hình bình hành vì có cạnh đối AD // BC và AD = BC bằng 3 cạnh ô vuông.

Tứ giác EFGH là hình bình hành vì có các cạnh đối bằng nhau.

EH = FG là đường chéo hình chữ nhật có cạnh 1 ô vuông và cạnh 3 ô vuông

EF = HG là đường chéo hình chữ nhật có cạnh 1 ô vuông và cạnh 3 ô vuông.


Câu 74: Cho hình bình hành ABCD. Gọi E là trung điểm của AB, F là trung điểm của CD. Chứng minh rằng DE = BF.

   

Ta có: AB = CD ( tính chất hình bình hành)

 \(\eqalign{  & EB = {1 \over 2}AB(gt)  \cr  & FD = {1 \over 2}CD(gt) \cr} \)

Suy ra: EB = FB  (1)

Advertisements (Quảng cáo)

Mà AB // CD (gt)

⇒ BE // FD   (2)

Từ (1) và (2) suy ra tứ giác BEDF là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

⇒ DE = BF (tính chất hình bình hành)


Câu 75: Cho hình bình hành ABCD. Tia phân giác của góc A cắt CD ở M. Tia phân giác của góc C cắt AB ở N. Chứng minh rằng AMCN là hình bình hành.

 

Ta có:  \(\widehat A = \widehat C\)  (tính chất hình bình hành)

Advertisements (Quảng cáo)

\(\eqalign{  & {\widehat A_2} = {1 \over 2}\widehat A(gt)  \cr  & {\widehat C_2} = {1 \over 2}\widehat C(gt) \cr} \)

Suy ra:

              AB // CD (gt)

hay AN // CM (1)

Mà  \({\widehat N_1} = {\widehat C_2}\) (so le trong)

Suy ra: \({\widehat A_2} = {\widehat N_1}\)

⇒ AM // CN ( vì có các cặp góc ở vị trí đồng vị bằng nhau) (2)

Từ (1) và (2) suy ra: Tứ giác AMCN là hình bình hành ( theo định nghĩa)


Câu 76: Trên hình 8, cho ABCD là hình bình hành. Chứng minh rằng AECF là hình bình hành.

Gọi O là giao điểm của AC và BD

OA = OC ( tính chất hình bình hành) (1)

Xét hai tam giác vuông AEO và CFO, ta có:

\(\widehat {AEO} = \widehat {CFO} = {90^0}\)

OA = OC ( chứng minh trên)

\(\widehat {AOE} = \widehat {COF}\) (đối đỉnh)

Do đó ∆ AEO =∆ CFO ( cạnh huyền, góc nhọn)

⇒ OE = OF (2)

Từ (1) và (2) suy ra tứ giác AECF là hình bình hành ( vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)

Advertisements (Quảng cáo)