Trang Chủ Sách bài tập lớp 8 SBT Toán 8

Bài 34, 35, 36 trang 84 SBT Toán 8 tập 1: Chứng minh rằng ba điểm E, I, F thẳng hàng.

Bài 4 Đường trung bình của tam giác, của hình thang Sách bài tập Toán 8 tập 1.Giải bài 34, 35, 36 trang 84 Sách bài tập Toán 8 tập 1. Câu 34: Chứng minh rằng AI = IM…

Câu 34: Cho tam giác ABC, điểm D thuộc cạnh AC sao cho \(AD = {1 \over 2}DC\). Gọi M là trung điểm của BC, I là giao điểm của BD và AM. Chứng minh rằng AI = IM.

Gọi E là trung điểm của DC

Trong ∆ BDC ta có:

 M là trung điểm của BC (gt)

E là trung điểm của CD (gt)

Nên ME là đường trung bình của ∆ BCD

⇒ ME // BD( tính chất đường trung bình của tam giác)

Suy ra: DI // ME

\(AD = {1 \over 2}DC\)  (gt)

\(DE = {1 \over 2}DC\) (theo cách vẽ)

⇒AD = DE

DI // ME

Nên AI = IM (tính chất đường trung bình của tam giác)


Câu 35: Hình thang ABCD có đáy AB, CD. Gọi E, F, I theo thứ tự là trung điểm của AD, BC, AC. Chứng minh rằng ba điểm E, I, F thẳng hàng.

Advertisements (Quảng cáo)

       

Hình thang ABCD có AB// CD

E là trung điểm của AD (gt)

F là trung điểm của BC (gt)

Nên EF là đường trung bình của hình thang ABCD

⇒ EF // CD (tính chất đường trung bình hình thang)  (1)

Trong ∆ ADC có:

E là trung điểm của AD (gt)

I là trung điểm của AC  (gt)

Advertisements (Quảng cáo)

Nên EI là đường trung bình của ∆ ADC

⇒ EI // CD (tính chất đường trung bình tam giác) (2)

Từ (1) và (2) theo tiên đề Ơclít đường thẳng EF và EI trùng nhau

Vậy E, I, F thẳng hàng.


Câu 36: Cho tứ giác ABCD. Gọi E, F, I theo thứ tự là trung điểm của AD, BC, AC.

Chứng minh rằng:

a. EI// CD, IF // AB

b. \(EF \le {{AB + CD} \over 2}\)

   

a) Trong tam giác ADC, ta có:

E là trung điểm của AD (gt)

I là trung điểm của AC (gt)

Nên EI là đường trung bình của ∆ ABC

⇒ EI // CD (tính chất đường trung bình của tam giác)

Và \(EI = {{CD} \over 2}\)

Trong tam giác ABC ta có:

I là trung điểm của AC

F là trung điểm của BC

Nên IF là đường trung bình của ∆ ABC

⇒ IF // AB (tính chất đường trung bình của tam giác)

Và \(IF = {{AB} \over 2}\)

b) Trong ∆ EIF ta có: EF ≤ EI + IF (dấu “=” xảy ra khi E, I, F thẳng hàng)

Mà \(EI = {{CD} \over 2}{\rm{;}}\,\,IF{\rm{ = }}{{AB} \over 2}\) (chứng minh trên) \( \Rightarrow {\rm{EF}} \le {{CD} \over 2} + {{AB} \over 2}\)

Vậy \(EF \le {{AB + CD} \over 2}\) (dấu bằng xảy ra khi AB // CD)

Advertisements (Quảng cáo)