Trang Chủ Sách bài tập lớp 8 SBT Toán 8

Bài 15, 16, 17, 18 trang 7 SBT Toán 8 tập 1: Biết số tự nhiên a chia cho 5 dư 4. Chứng minh rằng a^2 chia cho 5 dư 1

Bài tập trang 7 bài 3, 4, 5 Những hằng đẳng thức đáng nhớ Sách bài tập (SBT) Toán 8 tập 1.Giải bài 15, 16, 17, 18 trang 7 Sách bài tập Toán 8 tập 1. Câu 15: Biết số tự nhiên a chia cho 5 dư 4. Chứng minh rằng…

Câu 15: Biết số tự nhiên a chia cho 5 dư 4. Chứng minh rằng \({a^2}\) chia cho 5 dư 1.

Số tự nhiên a chia cho 5 dư 4 ⟹a=5k+4 (k∈N)

Ta có: \(\eqalign{  & {a^2} = {\left( {5k + 4} \right)^2} = 25{k^2} + 40k + 16 = 25{k^2} + 40k + 15 + 1  \cr  &  \cr} \)

                 \( = 5\left( {5{k^2} + 8k + 3} \right) + 1\)

                 \( = 5\left( {5{k^2} + 8k + 3} \right) + 1 \vdots 5\) .

Vậy \({a^2} = {\left( {5k + 4} \right)^2}\) chia cho 5 dư 1


Câu 16: Tính giá trị của các biểu thức sau:

a. \({x^2} – {y^2}\)  tại \(x = 87\)  và  \(y = 13\)

b. \({x^3} – 3{x^2} + 3x – 1\) tại \(x = 101\)

c. \({x^3} + 9{x^2} + 27x + 27\)  tại \(x = 97\)

a. \({x^2} – {y^2}\)\(= \left( {x + y} \right)\left( {x – y} \right)\) . Thay \(x = 87;y = 13\)

     Ta có: \({x^2} – {y^2}\)\( = \left( {x + y} \right)\left( {x – y} \right)\)

\( = \left( {87 + 13} \right)\left( {87 – 13} \right) = 100.74 = 7400\)

Advertisements (Quảng cáo)

b. \({x^3} – 3{x^2} + 3x – 1\) \( = {\left( {x – 1} \right)^3}\)

Thay \(x = 101\)

Ta có: \({\left( {x – 1} \right)^3} = {\left( {101 – 1} \right)^3} = {100^3} = 1000000\)

c. \({x^3} + 9{x^2} + 27x + 27\) \( = {x^3} + 3.{x^2}.3 + 3.x{.3^2} + {3^3} = {\left( {x + 3} \right)^3}\)

Thay \(x = 97\)  ta có:

\({\left( {x + 3} \right)^3} = {\left( {97 + 3} \right)^3} = {100^3} = 1000000\)


Câu 17: Chứng minh rằng:

a. \(\left( {a + b} \right)\left( {{a^2} – ab + {b^2}} \right) + \left( {a – b} \right)\left( {{a^2} + ab + {b^2}} \right) = 2{a^3}\)

b. \(\left( {a + b} \right)\left[ {{{\left( {a – b} \right)}^2} + ab} \right] = \left( {a + b} \right)\left[ {{a^2} – 2ab + {b^2} + ab} \right] = {a^3} + {b^3}\)

Advertisements (Quảng cáo)

c. \(\left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right) = {\left( {ac + bd} \right)^2} + {\left( {ad – bc} \right)^2}\)

                                               

a. Biến đổi vế trái:

\(\eqalign{  & \left( {a + b} \right)\left( {{a^2} – ab + {b^2}} \right) + \left( {a – b} \right)\left( {{a^2} + ab + {b^2}} \right)  \cr  &  = a{}^3 + {b^3} + {a^3} – {b^3} = 2{a^3} \cr} \)

Vế trái bằng vế phải, đẳng thức được chứng minh.

b. Biến đổi vế phải:

\(\eqalign{  & \left( {a + b} \right)\left[ {{{\left( {a – b} \right)}^2} + ab} \right] = \left( {a + b} \right)\left[ {{a^2} – 2ab + {b^2} + ab} \right]  \cr  &  = \left( {a + b} \right)\left( {{a^2} – ab + {b^2}} \right) = {a^3} + {b^3} \cr} \)

Vế phải bằng vế trái, vậy đẳng thức được chứng minh.

c. Biến đổi vế phải:

\(\eqalign{  & {\left( {ac + bd} \right)^2} + {\left( {ad – bc} \right)^2} = {a^2}{c^2} + 2abcd + {b^2}{d^2} + {a^2}{d^2} – 2abcd + {b^2}{c^2}  \cr  &  = {a^2}{c^2} + {b^2}{d^2} + {a^2}{d^2} + {b^2}{c^2} = c\left( {{a^2} + {b^2}} \right) + {d^2}\left( {{a^2} + {b^2}} \right)  \cr  &  = \left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right) \cr} \)

Vế phải bằng vế trái, đẳng  thức được chứng minh.


Câu 18: Chứng tỏ rằng:

a. \({x^2} – 6x + 10 > 0\)  với mọi \(x\)

b. \(4x – {x^2} – 5 < 0\)  với mọi \(x\)

a. \({x^2} – 6x + 10 = {x^2} – 2.x.3 + 9 + 1 = {\left( {x – 3} \right)^2} + 1\)

Ta có: \({\left( {x – 3} \right)^2} \ge 0\) với mọi \(x\)  nên \({\left( {x – 3} \right)^2} + 1 > 0\)  mọi \(x\)

Vậy \({x^2} – 6x + 10 > 0\) với mọi \(x\)

b. \(4x – {x^2} – 5 =  – \left( {{x^2} – 4x + 4} \right) – 1 =  – {\left( {x – 2} \right)^2} – 1\)

Ta có: \({\left( {x – 2} \right)^2} \ge 0\) với mọi  ⇒\( – {\left( {x – 2} \right)^2} \le 0\)  mọi \(x\)

⇒\( – {\left( {x – 2} \right)^2} – 1 < 0\)  với mọi \(x\)

Vậy \(4x – {x^2} – 5 < 0\)với mọi \(x\)

Advertisements (Quảng cáo)