Trang Chủ Sách bài tập lớp 7 SBT Toán 7

Bài 2.4, 2.5, 2.6 trang 39, 40 SBT Toán lớp 7 tập 2: Tính độ dài hình chiếu của hai đường xiên PQ, PR trên d

Bài 2 Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu SBT Toán tập 2. Giải bài 2.4, 2.5, 2.6 trang 39, 40 Sách Bài Tập Toán lớp 7 tập 2. Câu 2.4: Cho tam giác ABC vuông tại A. Gọi BD là đường phân giác của góc B (D ∈ AC). Chứng minh rằng BD > BC…

Câu 2.4: Cho tam giác ABC vuông tại A. Gọi BD là đường phân giác của góc B (D ∈ AC). Chứng minh rằng BD > BC.

Do BD là tia phân giác của góc ABC nên tia BD ở giữa hai tia BA và BC, suy ra D ở giữa A và C, hay AD < AC. Hai đường xiên BC, BD lần lượt có hình chiếu trên AC là AC và AD. Hơn nữa AD > AC, suy ra BD < BC. (Một cách tương tự, ta cũng chứng minh được đoạn thẳng nối B với trung điểm của đoạn thẳng AC nhỏ hơn BC)

Câu 2.5: Cho điểm A nằm ngoài đường thẳng xy

a) Tìm trên đường thẳng xy hai điểm M, N sao cho hai đường xiên AM và AN bằng nhau.

b) Lấy một điểm D trên đường thẳng xy. Chứng minh rằng:

– Nếu D ở giữa M và N thì AD < AM ;

– Nếu D không thuộc đoạn thẳng MN thì AD > AM.

a) Phân tích bài toán: Giả sử M và N là hai điểm của đường thẳng xy mà AM = AN. Nếu gọi H là chân đường vuông góc kẻ từ điểm A đến xy thì HM, HN lần lượt là hình chiếu của các đường xiên AM, AN.

Advertisements (Quảng cáo)

Từ AM = AN suy ra HM = HN, từ đó xác định được hai điểm M, N.

Kẻ AH vuông góc với xy (H ∈ xy)

Lấy hai điểm M, N trên xy sao cho HM = HN            (1)

(dùng compa vẽ một đường tròn tâm H bán kính tùy ý; đường tròn này cắt đường thẳng xy tại hai điểm M, N thỏa mãn HM = HN)

Hai đường xiên AM, AN lần lượt có hình chiếu là HM và HN, do đó từ (1) suy ra AM = AN

b) Xét trường hợp D ở giữa M và N

Advertisements (Quảng cáo)

–  Nếu D ≡ H thì AD = AH, suy ra  AD > AM (đường vuông góc ngắn hơn đường xiên)

– Nếu D ở giữa M và H thì HD < HM, do đó AD  < AM (đường xiên có hình chiếu ngắn hơn thì ngắn hơn)

– Nếu D ở giữa H và N thì HD < HN, do đó AD < AN.

Theo a) ta có AM = AN nên AD < AM

Vậy khi D ở giữa M và N thì ta luôn có AD < AM

Câu 2.6: Cho điểm P nằm ngoài đường thẳng d.

a) Hãy nêu cách vẽ đường xiên PQ, PR sao cho PQ = PR và \(\widehat {QP{\rm{R}}} = 60^\circ \)

b) Trong hình dựng được ở câu a), cho PQ = 18cm. Tính độ dài hình chiếu của hai đường xiên PQ, PR trên d.

a) Phân tích bài toán

Giả sử PQ và PR là hai đường xiên kẻ từ P đến d sao cho PQ = PR và \(\widehat {QP{\rm{R}}} = 60^\circ \). Gọi H là chân đường vuông góc kẻ từ P đến d. Khi đó ∆PHQ = ∆PHQ (cạnh huyền, cạnh góc vuông), suy ra \(\widehat {HPQ} = \widehat {HP{\rm{R}}} = 30^\circ \). Từ đó suy ra cách vẽ hai đường xiên PQ và PR.

Kẻ \(PH \bot d\) (H ∈ d). Dùng thước đo góc để vẽ góc HPx bằng 30°. Tia Px cắt d tại điểm Q. Trên d lấy điểm R sao cho HR = HQ. Hai đường xiên PQ và PR lần lượt có hình chiếu trên d là HQ và HR. Do HQ = HR nên PQ = PR.

Hơn nữa \(\widehat {QP{\rm{R}}} = 2\widehat {HPQ} = 60^\circ \)

b) Hướng dẫn

– Tam giác PQR có PQ = PR và \(\widehat {QP{\rm{R}}} = 60^\circ \), tam giác đó là tam giác gì?

– PQ = 18cm => QR =? ; HQ = HR =?

Advertisements (Quảng cáo)