Trang Chủ Lớp 7 Đề kiểm tra 15 phút lớp 7

Đề kiểm tra 15 phút lớp 7 môn Toán Chương 2 Tam giác: Tính số đo góc CDA và góc CDB?

CHIA SẺ
Cho tam giác ABC có \(\widehat A = {80^o}\) và \(\widehat B = {40^o}\) … Tính số đo \(\widehat {CDA}\) và \(\widehat {CDB}\) … trong Đề kiểm tra 15 phút lớp 7 môn Toán Chương 2 Tam giác. Xem Đề và đáp án đầy đủ phía dưới đây

Cho tam giác ABC có \(\widehat A = {80^o}\) và \(\widehat B = {40^o}\). Tia phân giác của góc C cắt AB tại D. Tính số đo \(\widehat {CDA}\) và \(\widehat {CDB}\).


Ta có \(\widehat A + \widehat B + \widehat C = {180^o}\)

\(\Rightarrow \widehat C = {180^o} – \left( {\widehat A + \widehat B} \right)\)

\( \;\;\;\;\;\;\;\;\;= {180^o} – \left( {{{80}^o} + {{40}^o}} \right)=60^o\)

CD là phân giác của góc \(\widehat C\) nên ta có:

\(\widehat {ACD} = \widehat {BCD} =\dfrac {{\widehat {ACB}}}{2} = \dfrac{{{{60}^o}} }{ 2} = {30^o}.\)

Xét ta có \(\widehat A + \widehat {ACD} + \widehat {CDA} = {180^o}\)

\( \Rightarrow \widehat {CDA} = {180^o} – \left( {\widehat A + \widehat {ACD}} \right)\)

\(\eqalign{  &  = {180^o} – \left( {{{80}^o} + {{30}^o}} \right)  \cr  &  = {70^o}. \cr} \)

Ta có \(\widehat {CDA} + \widehat {CDB} = {180^o}\)(kề bù) \( \Rightarrow \widehat {CDB} = {180^o} – {70^o} = {110^o}.\)