Trang Chủ Sách bài tập lớp 8 SBT Toán 8

Bài 1, 2, 3, 1.1 trang 23, 24 SBT Toán 8 tập 1: Tìm đa thức A trong mỗi đẳng thức…

CHIA SẺ
Bài 1 Phân thức đại số Sách bài tập (SBT) Toán 8 tập 1. Giải bài 1, 2, 3, 1.1 trang 23, 24 Sách bài tập Toán 8 tập 1. Câu 1: Dùng định nghĩa hai phân thức bằng nhau chứng minh các đẳng thức sau…

Câu 1: Dùng định nghĩa hai phân thức bằng nhau chứng minh các đẳng thức sau:

a. \({{{x^2}{y^3}} \over 5} = {{7{x^3}{y^4}} \over {35xy}}\)

b. \({{{x^2}\left( {x + 2} \right)} \over {x{{\left( {x + 2} \right)}^2}}} = {x \over {x + 2}}\)

c. \({{3 – x} \over {3 + x}} = {{{x^2} – 6x + 9} \over {9 – {x^2}}}\)

d. \({{{x^3} – 4x} \over {10 – 5x}} = {{ – {x^2} – 2x} \over 5}\)

a. \({x^2}{y^3}.35xy = 35{x^3}{y^4};5.7{x^3}{y^4} = 35{x^3}{y^4}\)

\( \Rightarrow {x^2}{y^3}.35xy = 5.7{x^3}{y^4}\). Vậy \({{{x^2}{y^3}} \over 5} = {{7{x^3}{y^4}} \over {35xy}}\)

b. \({x^2}\left( {x + 2} \right).\left( {x + 2} \right) = {x^2}{\left( {x + 2} \right)^2};x{\left( {x + 2} \right)^2}.x = {x^2}{\left( {x + 2} \right)^2}\)

\( \Rightarrow {x^2}\left( {x + 2} \right).\left( {x + 2} \right) = x{\left( {x + 2} \right)^2}x\).

Vậy \({{{x^2}\left( {x + 2} \right)} \over {x{{\left( {x + 2} \right)}^2}}} = {x \over {x + 2}}\)

c. \(\left( {3 – x} \right)\left( {9 – {x^2}} \right) = 27 – 3{x^2} – 9x + {x^3}\)

\(\left( {3 + x} \right)\left( {{x^2} – 6x + 9} \right) = 3{x^2} – 18x + 27 + {x^3} – 6{x^2} + 9x = 27 – 3{x^2} – 9x + {x^3}\)

\( \Rightarrow \left( {3 – x} \right)\left( {9 – {x^2}} \right) = \left( {3 + x} \right)\left( {{x^2} – 6x + 9} \right)\).

Vậy \({{3 – x} \over {3 + x}} = {{{x^2} – 6x + 9} \over {9 – {x^2}}}\)

d. \(\left( {{x^3} – 4x} \right).5 = 5{x^3} – 20x;\left( {10 – 5x} \right)\left( { – {x^2} – 2x} \right) =  – 10{x^2} – 20x + 5{x^3} + 10{x^2} = 5{x^3} – 20x\)

\( \Rightarrow \left( {{x^3} – 4x} \right).5 = \left( {10 – 5x} \right)\left( { – {x^2} – 2x} \right)\)

Vậy \({{{x^3} – 4x} \over {10 – 5x}} = {{ – {x^2} – 2x} \over 5}\)


Câu 2: Dùng định nghĩa hai phân thức bằng nhau, hãy tìm đa thức A trong mỗi đẳng thức sau:

a. \({A \over {2x – 1}} = {{6{x^2} + 3x} \over {4{x^2} – 1}}\)

b. \({{4{x^2} – 3x – 7} \over A} = {{4x – 7} \over {2x + 3}}\)

c. \({{4{x^2} – 7x + 3} \over {{x^2} – 1}} = {A \over {{x^2} + 2x + 1}}\)

d. \({{{x^2} – 2x} \over {2{x^2} – 3x – 2}} = {{{x^2} + 2x} \over A}\)

a. \({A \over {2x – 1}} = {{6{x^2} + 3x} \over {4{x^2} – 1}}\)

\( \Rightarrow A\left( {4{x^2} – 1} \right) = \left( {2x – 1} \right).\left( {6{x^2} + 3x} \right)\)

\( \Rightarrow A\left( {2x – 1} \right)\left( {2x + 1} \right) = \left( {2x – 1} \right).3x\left( {2x + 1} \right)\)

\( \Rightarrow A = 3x\)

Ta có: \({{3x} \over {2x – 1}} = {{6{x^2} + 3x} \over {4{x^2} – 1}}\)

b. \({{4{x^2} – 3x – 7} \over A} = {{4x – 7} \over {2x + 3}}\)

 \(\eqalign{  &  \Rightarrow \left( {4{x^2} – 3x – 7} \right)\left( {2x + 3} \right) = A\left( {4x – 7} \right)  \cr  &  \Rightarrow \left( {4{x^2} + 4x – 7x – 7} \right)\left( {2x + 3} \right) = A\left( {4x – 7} \right)  \cr  &  \Rightarrow \left[ {4x\left( {x + 1} \right) – 7\left( {x + 1} \right)} \right]\left( {2x + 3} \right) = A\left( {4x – 7} \right)  \cr  &  \Rightarrow \left( {x – 1} \right)\left( {4x – 7} \right)\left( {2x + 3} \right) = A\left( {4x – 7} \right)  \cr  &  \Rightarrow A = \left( {x + 1} \right)\left( {2x + 3} \right) = 2{x^2} + 3x + 2x + 3 = 2{x^2} + 5x + 3 \cr} \)

Ta có: \({{4{x^2} – 3x – 7} \over {2{x^2} + 5x + 3}} = {{4x – 7} \over {2x + 3}}\)

c. \({{4{x^2} – 7x + 3} \over {{x^2} – 1}} = {A \over {{x^2} + 2x + 1}}\)

\(\eqalign{  &  \Rightarrow \left( {4{x^2} – 7x + 3} \right).\left( {{x^2} + 2x + 1} \right) = A.\left( {{x^2} – 1} \right)\left( {{\pi  \over 2} – \theta } \right)  \cr  &  \Rightarrow \left( {4{x^2} – 4x – 3x + 3} \right).{\left( {x + 1} \right)^2} = A\left( {x + 1} \right)\left( {x – 1} \right)  \cr  &  \Rightarrow \left[ {4x\left( {x – 1} \right) – 3\left( {x – 1} \right)} \right].{\left( {x + 1} \right)^2} = A\left( {x + 1} \right)\left( {x – 1} \right)  \cr  &  \Rightarrow \left( {x – 1} \right)\left( {4x – 3} \right){\left( {x + 1} \right)^2} = A\left( {x + 1} \right)\left( {x – 1} \right)  \cr  &  \Rightarrow A = \left( {4x – 3} \right)\left( {x + 1} \right) = 4{x^2} + 4x – 3x – 3 = 4{x^2} + x – 3 \cr} \)

Ta có:    \({{4{x^2} – 7x + 3} \over {{x^2} – 1}} = {{4{x^2} + x – 3} \over {{x^2} + 2x + 1}}\)

d. \({{{x^2} – 2x} \over {2{x^2} – 3x – 2}} = {{{x^2} + 2x} \over A}\)

\(\eqalign{  &  \Rightarrow \left( {{x^2} – 2x} \right).A = \left( {2{x^2} – 3x – 2} \right)\left( {{x^2} + 2x} \right)  \cr  &  \Rightarrow x\left( {x – 2} \right).A = \left( {2{x^2} – 4x + x – 2} \right).x\left( {x + 2} \right)  \cr  &  \Rightarrow x\left( {x – 2} \right).A = \left[ {2x\left( {x – 2} \right) + \left( {x – 2} \right)} \right].x\left( {x + 2} \right)  \cr  &  \Rightarrow x\left( {x – 2} \right).A = \left( {2x + 1} \right)\left( {x – 2} \right).x.\left( {x + 2} \right)  \cr &  \Rightarrow A = \left( {2x + 1} \right)\left( {x + 2} \right) = 2{x^2} + 4x + x + 2 = 2{x^2} + 5x + 2 \cr} \)

Ta có : \({{{x^2} – 2x} \over {2{x^2} – 3x – 2}} = {{{x^2} + 2x} \over {{x^2} + 2x + 1}}\)


Câu 3: Bạn Lan viết các đẳng thức sau và đố các bạn trong nhóm học tập tìm ra chỗ sai. Em hãy sửa chỗ sai cho đúng.

a. \({{5x + 3} \over {x – 2}} = {{5{x^2} + 13x + 6} \over {{x^2} – 4}}\)

b. \({{x + 1} \over {x + 3}} = {{{x^2} + 3} \over {{x^2} + 6x + 9}}\)

c. \({{{x^2} – 2} \over {{x^2} – 1}} = {{x + 2} \over {x + 1}}\)

d. \({{2{x^2} – 5x + 3} \over {{x^2} + 3x – 4}} = {{2{x^2} – x – 3} \over {{x^2} + 5x + 4}}\)

 

a. \(\left( {5x + 3} \right)\left( {{x^2} – 4} \right) = 5{x^3} – 20x + 3{x^3} – 12\)

\(\left( {x – 2} \right)\left( {5{x^2} + 13x + 6} \right) = 5{x^3} + 13{x^2} + 6x – 10{x^2} – 26x – 12 = 5{x^3} – 20x + 3{x^2} – 12\)

Đẳng thức đúng.

b. \(\left( {x + 1} \right)\left( {{x^2} + 6x + 9} \right) = {x^3} + 6{x^2} + 9x + {x^2} + 6x + 9 = {x^3} + 7{x^2} + 15x + 9\)

\(\left( {x + 3} \right)\left( {{x^2} + 3} \right) = {x^3} + 3x + 3{x^2} + 9 \Rightarrow \left( {x + 1} \right)\left( {{x^2} + 6x + 9} \right) \ne \left( {x + 3} \right)\left( {{x^2} + 3} \right)\)

Đẳng thức sai

\({{x + 1} \over {x + 3}} \ne {{{x^2} + 3} \over {{x^2} + 6x + 9}}\).

Sửa lại \({{x + 1} \over {x + 3}} = {{{x^2} + 4x + 3} \over {{x^2} + 6x + 9}}\)

c. \(\left( {{x^2} – 2} \right)\left( {x + 1} \right) = {x^3} + {x^2} – 2x – 2\)

\(\left( {{x^2} – 1} \right)\left( {x + 2} \right) = {x^3} + 2{x^2} – x – 2\)

\(\left( {{x^2} – 2} \right)\left( {x + 1} \right) \ne \left( {{x^2} – 1} \right)\left( {x + 2} \right)\)

Đẳng thức sai

\({{{x^2} – 2} \over {{x^2} – 1}} = {{x + 2} \over {x + 1}}\).

Sửa lại \({{{x^2} + x – 2} \over {{x^2} – 1}} = {{x + 2} \over {x + 1}}\)

d. \(\left( {2{x^2} – 5x + 3} \right)\left( {{x^2} + 5x + 4} \right)\)

\( = 2{x^4} + 10{x^3} + 8{x^2} – 5{x^3} – 25{x^2} – 20x + 3{x^2} + 15x + 12\)

\(\eqalign{  &  = 2{x^4} + 5{x^3} – 14{x^2} – 5x + 12  \cr  & \left( {{x^2} + 3x – 4} \right)\left( {2{x^2} – x – 3} \right) = 2{x^4} – {x^3} – 3{x^2} + 6{x^3} – 3{x^2} – 9x – 8{x^2} + 4x + 12  \cr  &  = 2{x^4} + 5{x^3} – 14{x^2} – 5x + 12  \cr  &  \Rightarrow \left( {2{x^2} – 5x + 3} \right)\left( {{x^2} + 5x + 4} \right) = \left( {{x^2} + 3x – 4} \right)\left( {2{x^2} – x – 3} \right) \cr} \)

Đẳng thức đúng


Câu 1.1: Tìm đa thức P để \({{x – 3} \over {{x^2} + x + 1}} = {P \over {{x^3} – 1}}\) .

Phương án nào sau đây là đúng ?

A. \(P = {x^2} + 3\)

B. \(P = {x^2} – 4x + 3\)

C. \(P = x + 3\)

D. \(P = {x^2} – x – 3\)

Chọn B. \(P = {x^2} – 4x + 3\)


Câu 1.2: Trong mỗi trường hợp sau hãy tìm hai đa thức P và Q thỏa mãn đẳng thức :

a. \({{\left( {x + 2} \right)P} \over {x – 2}} = {{\left( {x – 1} \right)Q} \over {{x^2} – 4}}\)

b. \({{\left( {x + 2} \right)P} \over {{x^2} – 1}} = {{\left( {x – 2} \right)Q} \over {{x^2} – 2x + 1}}\)

a. \({{\left( {x + 2} \right)P} \over {x – 2}} = {{\left( {x – 1} \right)Q} \over {{x^2} – 4}}\)

P \( = x – 1\) ;Q \( = {\left( {x + 2} \right)^2} = {x^2} + 4x + 4\)

b. \({{\left( {x + 2} \right)P} \over {{x^2} – 1}} = {{\left( {x – 2} \right)Q} \over {{x^2} – 2x + 1}}\)

P \( = \left( {x – 2} \right)\left( {x + 1} \right) = {x^2} – x – 2\)

Q \( = \left( {x + 2} \right)\left( {x – 1} \right) = {x^2} + x – 2\)


Câu 1.3: Cho hai phân thức \({P \over Q}\) và\({R \over S}\).

Chứng minh rằng :

a. Nếu \({P \over Q} = {R \over S}\) thì \({{P + Q} \over Q} = {{R + S} \over S}\)

b. Nếu  và P ≠ Q thì R ≠ S và

a. \({P \over Q} = {R \over S}\) \( \Rightarrow PS = QR\) (1). Vì \({P \over Q},{R \over S}\) là phân thức

⇒ Q, S khác không. Cộng vào hai vế của đẳng thức (1) với Q S

P S + Q S = Q R + Q S ⇒ (P + Q). S = Q (R + S)

⇒\({{P + Q} \over Q} = {{R + S} \over S}\)

b. \({P \over Q} = {R \over S}\)⇒ P S = Q R (1) và P ≠ Q, R ≠ S

Trừ từng vế đẳng thức (1) với PR : P S – P R = Q R – P R

⇒ P (S – R) = R (Q – P) ⇒ \({P \over {Q – P}} = {R \over {S – R}}\)