Trang Chủ Lớp 10 Đề kiểm tra 15 phút lớp 10

Đề kiểm tra 15 phút lớp 10 môn Toán Chương 1 Hình học: Cho lục giác ABCDEF, tìm mệnh đề đúng?

Cho tam giác đều ABC có cạnh bằng a. Độ dài của véctơ \(\overrightarrow {BA}  + \overrightarrow {BC} \) là bao nhiêu?; Cho tam giác ABC vuông tại A có AB=6, AC=8. Độ dài của véctơ \(\overrightarrow {BA}  + \overrightarrow {BC} \) là … trong Đề kiểm tra 15 phút lớp 10 môn Toán Chương 1 Hình học. Tham khảo chi tiết đề và đáp án dưới đây

Chọn phương án đúng

1. Cho tam giác đều ABC có cạnh bằng a. Độ dài của véctơ \(\overrightarrow {BA}  + \overrightarrow {BC} \) là

A.2a

B.\({{a\sqrt 3 } \over 2}\)

C.a

D.\(a\sqrt 3 \)

2. Cho tam giác ABC vuông tại A có AB=6, AC=8. Độ dài của véctơ \(\overrightarrow {BA}  + \overrightarrow {BC} \) là

A.\(2\sqrt 3 \)

B.10

C.\(4\sqrt {13} \)

D.16

3. Cho tam giác đều ABC có cạnh bằng 3. Gọi I là trung điểm của BC. Độ dài véctơ \(\overrightarrow {CA}  – \overrightarrow {IC} \) là

A.\(\dfrac{3 }{ 2}\)

B. \(\dfrac{3\sqrt 7 } {2}\)

C.\(2\sqrt 3 \)

D.\(\dfrac{9 }{ 2}\)

4. Cho tam giác ABC vuông tại A có BC = 15. Gọi G là trọng tâm. Độ dài của véctơ \(\overrightarrow {GB}  + \overrightarrow {GC} \) là

A.10                          B.5

C.15                          D.20

5. Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AB, CD. Tìm mệnh đề sai

A.\(\overrightarrow {AB}  + \overrightarrow {CD}  = 2\overrightarrow {MN} \)

B. \(\overrightarrow {AC}  + \overrightarrow {DB}  = 2\overrightarrow {MN} \)

C.\(\overrightarrow {AD}  + \overrightarrow {BC}  = 2\overrightarrow {MN} \)

D. \(\overrightarrow {CA}  – \overrightarrow {BD}  = 2\overrightarrow {NM} \)

6. Cho lục giác ABCDEF. Tìm mệnh đề đúng

A.\(\overrightarrow {AD}  + \overrightarrow {BE}  + \overrightarrow {CF}  = \overrightarrow {AF}  + \overrightarrow {BD}  + \overrightarrow {CD} \)

B.\(\overrightarrow {AD}  + \overrightarrow {BE}  + \overrightarrow {CF}  = \overrightarrow {AE}  + \overrightarrow {BF}  + \overrightarrow {CE} \)

C.\(\overrightarrow {AD}  + \overrightarrow {BE}  + \overrightarrow {CF}  = \overrightarrow {AD}  + \overrightarrow {BF}  + \overrightarrow {CF} \)

D.\(\overrightarrow {AD}  + \overrightarrow {BE}  + \overrightarrow {CF}  = \overrightarrow {AF}  + \overrightarrow {BD}  + \overrightarrow {CE} \)

7. Cho tam giác OAB. Gọi M, N lần lượt là trung điểm OA, OB . Tìm mệnh đề đúng

A.\(\overrightarrow {MN}  = \dfrac{1 }{ 2}\overrightarrow {OA}  + \dfrac{1 }{ 2}\overrightarrow {OB} \)

B. \(\overrightarrow {MN}  = \dfrac{1}{2}\overrightarrow {OB}  – \dfrac{1 }{ 2}\overrightarrow {OA} \)

C. \(\overrightarrow {MN}  = \dfrac{1}{2}\overrightarrow {OA}  – \dfrac{1 }{2}\overrightarrow {OB} \)

D.\(\overrightarrow {MN}  = \overrightarrow {OA}  + \overrightarrow {OB} \)

8. Cho  hình bình hành ABCD. Gọi G là trọng tâm tam giác ABC. Tìm mệnh đề sai

A.\(\overrightarrow {DA}  + \overrightarrow {DB}  + \overrightarrow {DC}  = 3\overrightarrow {DG} \)

Advertisements (Quảng cáo)

B.\(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GD}  = \overrightarrow {CD} \)

C.\(\overrightarrow {DA}  + \overrightarrow {DB}  + \overrightarrow {DC}  = \overrightarrow {DG} \)

D.\(\overrightarrow {GA}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow {BD} \)

9. Cho hình bình hành ABCD và \(AB’C’D’\) có chung đỉnh A. Tìm mệnh đề đúng

A.\(BCC’B’\) là hình bình hành

B.\(\overrightarrow {CC’}  = \overrightarrow {BB’}  + \overrightarrow {DD’} \)

C.\(C{\rm{DD}}’C’\) là hình bình hành

D.\(\overrightarrow {AC}  = \overrightarrow {AC’} \)

1.0. Tam giác ABC là tam giác gì nếu thỏa mãn điều kiện \(\left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AB}  – \overrightarrow {AC} } \right|\) ?

A.Vuông                 B. Cân

C. Đều                   D. Nhọn


1..D

 

Gọi M là trung điểm AC. Khi đó \(\overrightarrow {BA}  + \overrightarrow {BC}  = 2\overrightarrow {BM} \) .

 Mà \(BM = \dfrac{a\sqrt 3 } { 2}\) . Do đó \(\left| {\overrightarrow {BA}  + \overrightarrow {BC} } \right| = \left| {2\overrightarrow {BM} } \right| = 2BM = a\sqrt 3 \) .

2..C

 

Gọi M là trung điểm AC.

Khi đó \(\overrightarrow {BA}  + \overrightarrow {BC}  \)\(\,= 2\overrightarrow {BM} \) .

Mà \(BM = \sqrt {A{B^2} + A{M^2}}  = \sqrt {36 + 16}  \)\(\,= 2\sqrt {13} \) .

Do đó \(\left| {\overrightarrow {BA}  + \overrightarrow {BC} } \right| = \left| {2\overrightarrow {BM} } \right| = 2BM \)\(\,= 4\sqrt {13} \) .

3..B

 

Advertisements (Quảng cáo)

Gọi M là trung điểm AI. Khi đó \(\overrightarrow {CA}  – \overrightarrow {IC}  = \overrightarrow {CA}  + \overrightarrow {CI}  = 2\overrightarrow {CM} \) .

Mà \(CM = \sqrt {C{I^2} + M{I^2}}  \)\(\; = \sqrt {{{\left( {\dfrac{3}{2}} \right)}^2} + {{\left( {\dfrac{{3\sqrt 3 }}{4}} \right)}^2}}  = \dfrac{{3\sqrt 7 }}{4}\).

Vậy \(\left| {\overrightarrow {CA}  – \overrightarrow {IC} } \right| = \left| {2\overrightarrow {CM} } \right| = 2CM = \dfrac{3\sqrt 7 }{ 2}\) .

4..B

 

Gọi M là trung điểm BC.

Ta có \(\overrightarrow {GB}  + \overrightarrow {GC}  = 2\overrightarrow {GM} \) .

Mà \(GM = \dfrac{1}{3}AM = \dfrac{1}{6}BC = \dfrac{{15}}{6} = \dfrac{5}{2}\).

Do đó \(\left| {\overrightarrow {GB}  + \overrightarrow {GC} } \right| = \left| {2\overrightarrow {GM} } \right| = 2GM = 5\) .

5..A

 

Ta có

\(\overrightarrow {AC}  + \overrightarrow {BD}  \)

\(= \overrightarrow {AM}  + \overrightarrow {MN}  + \overrightarrow {NC}  + \overrightarrow {BM}  + \overrightarrow {MN}  + \overrightarrow {ND} \)

\(= 2\overrightarrow {MN}  + \left( {\overrightarrow {AM}  + \overrightarrow {BM} } \right) + \left( {\overrightarrow {NC}  + \overrightarrow {ND} } \right) \)

\(= 2\overrightarrow {MN} \)

Suy ra (B) là mệnh đề đúng.

Tương tự

\(\overrightarrow {AD}  + \overrightarrow {BC} \)

\(= \overrightarrow {AM}  + \overrightarrow {MN}  + \overrightarrow {ND}  + \overrightarrow {BM}  + \overrightarrow {MN}  + \overrightarrow {NC} \)

\( = 2\overrightarrow {MN}  + \left( {\overrightarrow {AM}  + \overrightarrow {BM} } \right) + \left( {\overrightarrow {NC}  + \overrightarrow {ND} } \right)\)

\(= 2\overrightarrow {MN} \)

Vậy (C) là mệnh đề đúng.

Cũng vậy:

\(\overrightarrow {CA}  – \overrightarrow {BD} \)\(\,= \overrightarrow {CN}  + \overrightarrow {MN}  + \overrightarrow {MA}  – \left( {\overrightarrow {BM}  + \overrightarrow {MN}  + \overrightarrow {ND} } \right)\)

\( = 2\overrightarrow {MN}  + \left( {\overrightarrow {MA}  + \overrightarrow {MB} } \right) + \left( {\overrightarrow {CN}  + \overrightarrow {DN} } \right) = 2\overrightarrow {MN} \)

Do đó (D) là mệnh đề đúng.

6..D

\(\overrightarrow {AD}  + \overrightarrow {BE}  + \overrightarrow {CF}  \)

\(= \overrightarrow {AF}  + \overrightarrow {FD}  + \overrightarrow {BD}  + \overrightarrow {DE}  + \overrightarrow {CE}  + \overrightarrow {EF} \)

\( = \overrightarrow {AF}  + \overrightarrow {BD}  + \overrightarrow {CE}  + \overrightarrow {FD}  + \overrightarrow {DE}  + \overrightarrow {EF} \)

Chú ý kết quả đúng khi thứ tự các điểm đầu được giữ nguyên, chỉ hoán vị vòng quanh các điểm cuối.

7..B

 

Ta có \(\overrightarrow {MN}  = \overrightarrow {ON}  – \overrightarrow {OM}  = {1 \over 2}\overrightarrow {OB}  – {1 \over 2}\overrightarrow {OA} \) .

Vậy (B) đúng.

8..C

Hiển nhiên \(\overrightarrow {DA}  + \overrightarrow {DB}  + \overrightarrow {DC}  = 3\overrightarrow {DG} \) .

Mặt khác

\(\eqalign{  & \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GD}  \cr&= \overrightarrow {GA}  + \overrightarrow {GB}  + 2\overrightarrow {GB}   \cr  & {\rm{                        }} = \overrightarrow {GA}  – \overrightarrow {GB}  = \overrightarrow {BA}  = \overrightarrow {CD}  \cr} \) .

Tương tự \(\overrightarrow {GA}  + \overrightarrow {GC}  + \overrightarrow {GD}  = 2\overrightarrow {GO}  + \overrightarrow {GD}  \)\(\,= \overrightarrow {GD}  – \overrightarrow {GB}  = \overrightarrow {BD} \) .

Vậy (A), (B), (D) là các mệnh đề đúng

9..B

 

Ta có:

\(\overrightarrow {BB’}  + \overrightarrow {DD’} \)

\(\;= \overrightarrow {AB’}  – \overrightarrow {AB}  + \overrightarrow {AD’}  – \overrightarrow {AD} \)

\(\eqalign{  &  = \left( {\overrightarrow {AB’}  + \overrightarrow {AD’} } \right) – \left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right)  \cr  &  = \overrightarrow {AC’}  – \overrightarrow {AC}  = \overrightarrow {CC’}  \cr} \) .

1.0.A

Vẽ hình bình hành ABCD.

Ta có \(\overrightarrow {AB}  + \overrightarrow {AC}  = \overrightarrow {AD} ,{\rm{ }}\overrightarrow {AB}  – \overrightarrow {AC}  = \overrightarrow {CB} \) .

Do đó \(\left| {\overrightarrow {AB}  + \overrightarrow {AC} } \right| = \left| {\overrightarrow {AB}  – \overrightarrow {AC} } \right| \)\(\,\Leftrightarrow AD = CB \Leftrightarrow ABCD\) là hình chữ nhật.

Vậy ABC là tam giác vuông tại A.

Advertisements (Quảng cáo)