Bài 27: Chứng minh rằng trong một hình bình hành, tổng bình phương các cạnh bằng tổng bình phương của hai đường chéo.
Áp dụng công thức tính trung tuyến \(AO\) trong tam giác \(ABD\), ta có
\(\eqalign{
& A{O^2} = {{A{B^2} + A{D^2}} \over 2} – {{B{D^2}} \over 4}\,\,\,\,\,\,\,\,\,\,\,\,\,\, \cr
& \Rightarrow \,\,\,4A{O^2} = 2(A{B^2} + A{D^2}) – B{D^2}\,\, \cr
& \Rightarrow \,\,\,A{C^2} + B{D^2} = 2(A{B^2} + A{D^2}) = A{B^2} + A{D^2} + D{C^2} + B{C^2} \cr} \)
Bài 28: Chứng minh rằng tam giác \(ABC\) vuông ở \(A\) khi và chỉ khi \(5m_a^2 = m_b^2 + m_c^2\).
Ta có \(5m_a^2 = m_b^2 + m_c^2\)
Advertisements (Quảng cáo)
\(\eqalign{
& \Leftrightarrow \,\,\,5\left( {{{{b^2} + {c^2}} \over 2} – {{{a^2}} \over 4}} \right) = {{{a^2} + {c^2}} \over 2} – {{{b^2}} \over 4} + {{{a^2} + {b^2}} \over 2} – {{{c^2}} \over 4} \cr
& \Leftrightarrow \,\,\,5\left( {2{b^2} + 2{c^2} – {a^2}} \right) = 2{a^2} + 2{c^2} – {b^2} + 2{a^2} + 2{b^2} – {c^2} \cr
& \Leftrightarrow \,\,\,{b^2} + {c^2} = {a^2} \cr} \)
\( \Leftrightarrow \) Tam giác \(ABC\) vuông ở \(A\).
Bài 29: Tam giác \(ABC\) có \(b = 6,12\,;\,c = 5,35\,;\,\widehat A = {84^0}\). Tính diện tích tam giác đó.
Ta có \({S_{ABC}} = {1 \over 2}.b.c.\sin A = {1 \over 2}.(6,12)\,.(5,35)\,.\sin {84^0} \approx 16,3\).
Advertisements (Quảng cáo)
Bài 30: Cho tứ giác \(ABCD\). Gọi \(M, N\) lần lượt là trung điểm của \(AC\) và \(BD\). Chứng minh rằng \(A{B^2} + B{C^2} + C{D^2} + D{A^2} = A{C^2} + B{D^2} + 4M{N^2}\).
Áp dụng công thức tính trung tuyến, \(MN\) là trung tuyến của tam giác \(BMD\), ta có
\(M{N^2} = {{B{M^2} + D{M^2}} \over 2} – {{B{D^2}} \over 4}\,\,\,\,\, \Leftrightarrow \,\,4M{N^2} = 2(B{M^2} + D{M^2}) – B{D^2}\,\,\,(1)\)
Tương tự, \(BM, DM\) lần lượt là trung tuyến của tam giác \(ABC, ADC\) nên
\(\eqalign{
& 4B{M^2} = 2(A{B^2} + B{C^2}) – A{C^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2) \cr
& 4D{M^2} = 2(D{A^2} + C{D^2}) – A{C^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(3) \cr} \)
Từ (2), (3) suy ra
\(2(B{M^2} + D{M^2}) = A{B^2}\, + B{C^2} + C{D^2} + D{A^2} – A{C^2}\,\,(4)\)
Thay (4) vào (1), ta có
\(\eqalign{
& \,\,\,\,\,\,\,\,4M{N^2} = A{B^2} + B{C^2} + C{D^2} + D{A^2} – A{C^2} – B{D^2} \cr
& \Rightarrow \,\,\,A{B^2} + B{C^2} + C{D^2} + D{A^2} = A{C^2} + B{D^2} + 4M{N^2} \cr} \)