Trang Chủ Sách bài tập lớp 9 SBT Toán 9

Bài 31, 32, 33 trang 161 SBT Toán 9 tập 1: Cho đường tròn tâm O bán kính 5dm, điểm M cách O là 3dm. Tính độ dài dây ngắn nhất đi qua điểm M

Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây – SBT Toán lớp 9: Giải bài 31, 32, 33 trang 161 Sách bài tập Toán 9 tập 1. Câu 31: Cho đường tròn (O), các bán kính OA và OB; Cho đường tròn tâm O bán kính 5dm, điểm M cách O là 3dm. Tính độ dài dây ngắn nhất đi qua điểm M…

Câu 31: Cho đường tròn (O), các bán kính OA và OB. Trên cung nhỏ AB lấy các điểm M và N sao cho AM = BN. Gọi C là giao điểm của các đường thẳng AM và BN. Chứng minh rằng

a)      OC là tia phân giác của góc AOB.

b)      OC vuông góc với AB.

a) Kẻ OH ⊥ AM, OK ⊥ BN

Ta có: AM = BN (gt)

Suy ra: OH = OK (hai dây bằng nhau cách đều tâm)

Xét hai tam giác OCH và OCK, ta có:

\(\widehat {OHC} = \widehat {OKC} = 90^\circ \)

         OC chung

         OH = OK (chứng minh trên)

Suy ra:  ∆OCH = ∆OCK (cạnh huyền, cạnh góc vuông)

\(\widehat {{O_1}} = \widehat {{O_2}}\)

Xét hai tam giác OAH và OBK, ta có:

\(\widehat {OHA} = \widehat {OKB} = 90^\circ \)

          OA = OB

          OH = OK ( chứng minh trên)

Suy ra: ∆OAH = ∆OBK (cạnh huyền, cạnh góc vuông)

Advertisements (Quảng cáo)

\(\widehat {{O_3}} = \widehat {{O_4}}\)

Suy ra:  \(\widehat {{O_1}} + \widehat {{O_3}} = \widehat {{O_2}} + \widehat {{O_4}}\) hay \(\widehat {AOC} = \widehat {BOC}\)

Vậy OC là tia phân giác của \(\widehat {AOB}\)

b) Tam giác OAB cân tại O có OC là tia phân giác nên OC đồng thời cũng là đường cao ( tính chất tam giác cân).

Suy ra: OC ⊥ AB.


Câu 32*: Cho đường tròn tâm O bán kính 5dm, điểm M cách O là 3dm.

a)      Tính độ dài dây ngắn nhất đi qua điểm M.

b)      Tính độ dài dây dài nhất đi qua M.

a) Dây đi qua M ngắn dây là dây AB vuông góc với OM.

Advertisements (Quảng cáo)

Áp dụng định lí Pi-ta-go vào tam giác vuông OAM ta có:

\(O{A^2} = A{M^2} + O{M^2}\)

Suy ra:   \(A{M^2} = O{A^2} – O{M^2} = {5^2} – {3^2} = 16\)

               AM = 4 (dm)

Ta có:     OM ⊥ AB

Suy ra:   AM = \({1 \over 2}AB\)

Hay:        AB = 2AM = 2.4 = 8 (dm)

b) Dây đi qua M lớn nhất khi nó là đường kính của đường tròn (O). Vậy dây có độ dài bằng 2R = 2.5 = 10 (dm)


Câu 33*: Cho đường tròn (O), hai dây AB và CD cắt nhau tại điểm M nằm bên trong đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. Cho biết AB  >CD,  chứng minh rằng MH > MK.

Ta có:  HA = HB (gt)

Suy ra:  OH ⊥ AB (đường kính dây cung)

Lại có:   KC = KD (gt)

Suy ra:   OK ⊥ CD ( đường kính dây cung)

Mà  AB > CD (gt)

Nên  OK > OH ( dây lớn hơn gần tâm hơn)

Áp dụng định lí Pi-ta-go vào tam giác vuông OHM ta có:

\(O{M^2} = O{H^2} + H{M^2}\)

Suy ra:     \(H{M^2} = O{M^2} – O{H^2}\)      (1)

Áp dụng định lí Pi-ta-go vào tam giác vuông OKM, ta có:

\(O{M^2} = O{K^2} + K{M^2}\)

Suy ra:    \(K{M^2} = O{M^2} – O{K^2}\)                  (2)

Mà  OH < OK (cmt)            (3)

Từ (1), (2) và (3) suy ra: \(H{M^2} > K{M^2}\) hay HM > KM.

Advertisements (Quảng cáo)