Trang Chủ Lớp 7 Đề kiểm tra 15 phút lớp 7

Kiểm tra 15 phút Chương 3 – Hình học 7: Chứng minh tam giác ADE vuông cân

Cho tam giác ABC có ba góc nhọn, hai đường cao BH và CK …Chứng minh \(\Delta A{\rm{D}}E\) vuông cân … trong Kiểm tra 15 phút Chương 3 – Hình học 7. Xem Đề và đáp án đầy đủ phía dưới đây

Cho tam giác ABC có ba góc nhọn, hai đường cao BH và CK. Trên tia đối của tia BH lấy D sao cho \(BD = AC\), trên tia đối của tia CK lấy điểm E sao cho \(CE = AB\). Chứng minh \(\Delta A{\rm{D}}E\) vuông cân.


Ta có \({\widehat B_1} = {\widehat C_1}\) (cùng phụ với \(\widehat {BAC}\))

\( \Rightarrow \widehat {AB{\rm{D}}} = \widehat {AC{\rm{E}}}\) (kề bù với  \({\widehat B_1} = {\widehat C_1}\))

Xét \(\Delta AB{\rm{D}}\) và \(\Delta EC{\rm{A}}\) có:

Advertisements (Quảng cáo)

+) \(AB = CE\) (gt);

+) \(\widehat {AB{\rm{D}}} = \widehat {AC{\rm{E}}}\) (cmt);

Advertisements (Quảng cáo)

+) \(BD = AC\) (gt);

Do đó \(\Delta AB{\rm{D}} = \Delta EC{\rm{A}}\) (c.g.c)

\( \Rightarrow {\widehat A_1} = {\widehat E_1}\) và \({\widehat A_3} = {\widehat D_1}\) (góc tương ứng).

\(\Delta ABH\) vuông tại H (gt)

\({\widehat B_1} + \widehat {BAC} = {90^0}\) mà \({\widehat B_1} = {\widehat A_1} + {\widehat D_1}\) (góc ngoài của \(\Delta AB{\rm{D}}\)) và \({\widehat D_1} = {\widehat A_2}\) (cmt).

Do đó  \({\widehat A_1} + \widehat {BAC} + {\widehat A_2} = {90^0},\) lại có \(AD = AE\) (cmt).

Vậy \(\Delta A{\rm{D}}E\) vuông cân.

Advertisements (Quảng cáo)