Trang Chủ Lớp 7 Đề kiểm tra 15 phút lớp 7

Kiểm tra 15 phút Toán lớp 7 – Chương 2 – Tam giác: Chứng minh góc xOy và góc x’Oy’ là hai góc đối đỉnh

rên đường thẳng xx’ lấy một điểm O. Trên nửa mặt phẳng bờ xx’ vẽ tia Oy sao cho \(\widehat {x’Oy’}\) \(\widehat {xOy} = {45^o}.\) Trên nửa mặt phẳng kia vẽ tia Oz sao cho \(Oz \bot O\) x. Gọi Oy’ là tia phân giác của \(\widehat {x’Oz}.\). Chứng minh \(\widehat {xOy}\) và \(\widehat {x’Oy’}\) là hai góc đối đỉnh … trong Kiểm tra 15 phút Toán lớp 7 – Chương 2 – Tam giác. Xem Đề và đáp án đầy đủ phía dưới đây

Trên đường thẳng xx’ lấy một điểm O. Trên nửa mặt phẳng bờ xx’ vẽ tia Oy sao cho \(\widehat {x’Oy’}\) \(\widehat {xOy} = {45^o}.\) Trên nửa mặt phẳng kia vẽ tia Oz sao cho \(Oz \bot O\) x. Gọi Oy’ là tia phân giác của \(\widehat {x’Oz}.\)

a) Chứng minh \(\widehat {xOy}\) và \(\widehat {x’Oy’}\) là hai góc đối đỉnh.

b) Trên nửa mặt phẳng bờ xx’ có chứa tia Oy vẽ tia Ot sao cho \(Ot \bot Oy.\) Hãy tính \(\widehat {x’Ot}.\)

Advertisements (Quảng cáo)


a) Ox’ và Ox là hai tia đối nhau nên \(\widehat {xOx’} = {180^o}\) mà \(\widehat {xOz} = {90^o} \Rightarrow \widehat {x’Oz} = {90^o}.\)

Mặt khác Oy là tia phân giác của \(\widehat {x’Oz}\) nên\(\widehat {x’Oy’} = \widehat {zOy’} = {1 \over 2}{.90^o} = {45^o}\)

\( \Rightarrow \widehat {x’Oy’} = \widehat {xOy} = {45^o}\) mà Ox’ và Ox là hai tia đối nhau, hai tia Oy’ và Oy thuộc hai mặt phẳng đối nhau có bờ là xx’. Do đó \(\Rightarrow \widehat {x’Oy’}\) và \(\widehat {xOy}\) là hai góc đối đỉnh.

b) Ta có Oy’ và Oy là hai tia đối nhau ( chứng minh trên)

\(\widehat {AOC} = {60^o}.\) \( \Rightarrow \widehat {yOt} + \widehat {tOy’} = {180^o}\) hay \({90^o} + \widehat {tOy’} = {180^o}\)\( \Rightarrow \widehat {tOy’} = {90^o}.\) Lại có Oy’ và Oy thuộc hai nửa mặt phẳng đối nhau bờ xx’ nên Ox’ nằm giữa hai tia Oy và Oy’. Do đó \(\widehat {tOx’} + \widehat {x’Oy’} = \widehat {tOy’}\) hay \(\widehat {tOx’} + {45^o} = {90^o} \Rightarrow \widehat {tOx’} = {45^o}.\)

Advertisements (Quảng cáo)