Trang Chủ Sách bài tập lớp 9 SBT Toán 9

Bài 38, 39, 40 trang 162 SBT Toán 9 tập 1: Cho đường tròn (O), bán kính OA, dây CD là đường trung trực của OA. Tứ giác OCAD là hình gì

Bài 4. Vị trí tương đối của đường thẳng và đường tròn – SBT Toán lớp 9: Giải bài 38, 39, 40 trang 162 Sách bài tập Toán 9 tập 1. Câu 38: Cho đường tròn (O) bán kính bằng 2cm. Một đường thẳng đi qua điểm A nằm bên ngoài đường tròn và cắt đường tròn tại B và C, trong đó AB = BC; Cho đường tròn (O), bán kính OA, dây CD là đường trung trực của OA. Tứ giác OCAD là hình gì…

Câu 38: Cho đường tròn (O) bán kính bằng 2cm. Một đường thẳng đi qua điểm A nằm bên ngoài đường tròn và cắt đường tròn tại B và C, trong đó AB = BC. Kẻ đường kính COD. Tính độ dài AD.

Trong tam giác ACD, ta có:

          B là trung điểm của AC (gt)

          O là trung điểm của CD

Nên OB là đường trung bình của ∆ACD.

Suy ra: \(OB = {1 \over 2}AD\) ( tính chất đường trung bình của tam giác)

Vậy AD = 2. OB = 2.2 = 4 (cm).


Câu 39: Cho hình thang vuông ABCD \(\widehat A = \widehat D = 90^\circ )\), AB = 4cm, BC = 13cm, CD = 9cm.

a)      Tính độ dài AD.

b)      Chứng minh rằng đường thẳng AD tiếp xúc với đường tròn có đường kính là BC.

a) Kẻ BE ⊥ CD

Suy ra tứ giác ABED là hình hình chữ nhật

Ta có:     AD = BE

Advertisements (Quảng cáo)

               AB = DE = 4 (cm)

Suy ra:    CE = CD – DE = 9 – 4 = 5 (cm)

Áp dụng định lí Pi-ta-go vào tam giác vuông BCE ta có:

\(B{C^2} = B{E^2} + C{E^2}\)

Suy ra:      \(B{E^2} = B{C^2} – C{E^2} = {13^2} – {5^2} = 144\)

                 BE = 12 (cm)

 Vậy:        AD = 12 (cm)

b) Gọi I là trung điểm của BC

Ta có: \(IB = IC = {1 \over 2}BC = {1 \over 2}.13 = 6,5 (cm)\)  (1)

Kẻ IH ⊥ AD. Khi đó HI là đường trung bình của hình thang ABCD.

Advertisements (Quảng cáo)

Ta có: \(HI = {{AB + CD} \over 2} = {{4 + 9} \over 2} = 6,5\) (cm)  (2)

Từ (1) và (2) suy ra: IB = HI = R

Vậy đường tròn \(\left( {I;{{BC} \over 2}} \right)\) tiếp xúc với đường thẳng AD.


Câu 40: Cho đường tròn (O), bán kính OA, dây CD là đường trung trực của OA.

a) Tứ giác OCAD là hình gì ? Vì sao?

b) Kẻ tiếp tuyến đường tròn tại C, tiếp tuyến này cắt đường thẳng OA tại I. Tính độ dài CI biết OA = R.

a) Gọi H là giao điểm của OA và CD

Vì CD là đường trung trực của OA nên:

    CD ⊥ OA và HA = HO

Mà CD ⊥ OA nên HC = HD (đường kính dây cung)

Vì tứ giác ACOD có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên nó là hình bình hành.

Đồng thời CD ⊥ OA nên ACOD là hình thoi.

b) Vì ACOD là hình thoi nên AC = OC

Mà OC = OA ( = R) nên tam giác OAC đều

Suy ra: \(\widehat {COA} = 60^\circ \) hay \(\widehat {COI} = 60^\circ \)

Mà CI ⊥ OC (tính chất tiếp tuyến)

Trong tam giác vuông OCI, ta có:

\(CI = OC.tg\widehat {COI} = R.tg60^\circ  = R\sqrt 3 \).

Advertisements (Quảng cáo)