Câu II.1: (Đề thi học sinh giỏi toán cấp II, Miền Bắc năm 1963)
Rút gọn và tính giá trị của biểu thức sau tại x = -1,76 và \(y = {3 \over {25}}\)
\(P = \left[ {\left( {{{x – y} \over {2y – x}} – {{{x^2} + {y^2} + y – 2} \over {{x^2} – xy – 2{y^2}}}} \right):{{4{x^4} + 4{x^2}y + {y^2} – 4} \over {{x^2} + y + xy + x}}} \right]:{{x + 1} \over {2{x^2} + y + 2}}\)
Ta có : \(\eqalign{ & P = \left[ {\left( {{{x – y} \over {2y – x}} – {{{x^2} + {y^2} + y – 2} \over {{x^2} – xy – 2{y^2}}}} \right):{{4{x^4} + 4{x^2}y + {y^2} – 4} \over {{x^2} + y + xy + x}}} \right]:{{x + 1} \over {2{x^2} + y + 2}} \cr & = \left[ {\left( {{{x – y} \over {2y – x}} – {{{x^2} + {y^2} + y – 2} \over {\left( {x + y} \right)\left( {x – 2y} \right)}}} \right):{{{{\left( {2{x^2} + y} \right)}^2} – 4} \over {\left( {x + y} \right)\left( {x + 1} \right)}}} \right].{{2{x^2} + y + 2} \over {x + 1}} \cr & = \left[ {{{\left( {y – x} \right)\left( {x + y} \right) – \left( {{x^2} + {y^2} + y – 2} \right)} \over {\left( {x + y} \right)\left( {x – 2y} \right)}}.{{\left( {x + y} \right)\left( {x + 1} \right)} \over {\left( {2{x^2} + y + 2} \right)\left( {2{x^2} + y – 2} \right)}}} \right].{{2{x^2} + y + 2} \over {x + 1}} \cr & = \left[ {{{{y^2} – {x^2} – {x^2} – {y^2} – y + 2} \over {\left( {x + y} \right)\left( {x – 2y} \right)}}.{{\left( {x + y} \right)\left( {x + 1} \right)} \over {\left( {2{x^2} + y + 2} \right)\left( {2{x^2} + y – 2} \right)}}} \right].{{2{x^2} + y + 2} \over {x + 1}} \cr & = {{ – \left( {2{x^2} + y – 2} \right)\left( {x + y} \right)\left( {x + 1} \right)} \over {\left( {x + y} \right)\left( {x – 2y} \right)\left( {2{x^2} + y + 2} \right)\left( {2{x^2} + y – 2} \right)}}.{{2{x^2} + y + 2} \over {x + 1}} \cr & = {{ – \left( {x + 1} \right)} \over {\left( {x – 2y} \right)\left( {2{x^2} + y + 2} \right)}}.{{2{x^2} + y + 2} \over {x + 1}} = {{ – 1} \over {x – 2y}} = {1 \over {2y – x}} \cr} \)
Advertisements (Quảng cáo)
Thay \(x = – 1,76;y = {3 \over {25}}\)
\(P = {1 \over {2.{3 \over {25}} – \left( { – 1,76} \right)}} = {1 \over {0,24 + 1,76}} = {1 \over 2}\)
Advertisements (Quảng cáo)
Câu II.2: (Đề thi học sinh giỏi, lớp 8 toàn quốc năm 1980).
Thực hiện phép tính :
\({1 \over {\left( {b – c} \right)\left( {{a^2} + ac – {b^2} – bc} \right)}} + {1 \over {\left( {c – a} \right)\left( {{b^2} + ab – {c^2} – ac} \right)}} + {1 \over {\left( {a – b} \right)\left( {{c^2} + bc – {a^2} – ab} \right)}}\)
\({1 \over {\left( {b – c} \right)\left( {{a^2} + ac – {b^2} – bc} \right)}} + {1 \over {\left( {c – a} \right)\left( {{b^2} + ab – {c^2} – ac} \right)}} + {1 \over {\left( {a – b} \right)\left( {{c^2} + bc – {a^2} – ab} \right)}}\)
\(\eqalign{ & = {1 \over {\left( {b – c} \right)\left[ {\left( {a + b} \right)\left( {a – b} \right) + c\left( {a – b} \right)} \right]}} + {1 \over {\left( {c – a} \right)\left[ {\left( {b + c} \right)\left( {b – c} \right) + a\left( {b – c} \right)} \right]}} \cr & + {1 \over {\left( {a – b} \right)\left[ {\left( {c + a} \right)\left( {c – a} \right) + b\left( {c – a} \right)} \right]}} \cr & = {1 \over {\left( {b – c} \right)\left( {a – b} \right) + \left( {a + b + c} \right)}} + {1 \over {\left( {c – a} \right)\left( {b – c} \right)\left( {a + b + c} \right)}} + {1 \over {\left( {a – b} \right)\left( {c – a} \right)\left( {a + b + c} \right)}} \cr & = {{c – a + a – b + b – c} \over {\left( {a – b} \right)\left( {b – c} \right)\left( {c – a} \right)\left( {a + b + c} \right)}} = 0 \cr} \)