Trang Chủ Sách bài tập lớp 7 SBT Toán 7

Bài 46, 47, 48 trang 143 Sách BT Toán 7 tập 1: Hãy chứng minh rằng A là trung điểm của MN ?

Bài 4 Trường hợp bằng nhau thứ hai của tam giác cạnh-góc-cạnh (c-g-c) Sách Bài Tập Toán lớp 7 tập 1. Giải bài 46, 47, 48 trang 143 Sách Bài Tập Toán lớp 7 tập 1. Câu 46: Cho tam giác ABC có ba góc nhọn. Vẽ đoạn thẳng AD vuông góc với AB và bằng AB …

Câu 46: Cho tam giác ABC có ba góc nhọn. Vẽ đoạn thẳng AD vuông góc với AB và bằng AB (D khác phía C đối với AB), vẽ đoạn thẳng AE vuông góc với AC và bằng AC (E khác phía B đối với AC)

Chứng minh rằng:

a) DC = BE

b) \({\rm{D}}C \bot BE\)

a) Xét ∆ABE và ∆ACD, ta có:

AB = AD (gt)

AE = AC (gt)

\(\eqalign{
& \widehat {BA{\rm{E}}} = \widehat {BAC} + 90^\circ \cr
& \widehat {CA{\rm{D}}} = \widehat {BAC} + 90^\circ \cr
& \Rightarrow \widehat {BA{\rm{E}}} = \widehat {CA{\rm{D}}} \cr} \)

Suy ra: ∆ABE = ∆ADC (c.g.c)

 DC = BE (2 cạnh tương ứng)

b) Gọi giao điểm DC và AB là H, giao điểm của CD và BE là K

Ta có: ∆ABE = ∆ADC (chứng minh trên)

\(\widehat {ABE} = \widehat D\)                                                                         (1)

Trong tam giác vuông AHD, ta có: \(\widehat {HA{\rm{D}}} = 90^\circ \)

\( \Rightarrow \widehat D + \widehat {AH{\rm{D}}} = 90^\circ \) (tính chất tam giác vuông)       (2)

Mà: \(\widehat {AH{\rm{D}}} = \widehat {KHB}\) (đối đỉnh)                                        (3)

Từ (1), (2) và (3) suy ra: \(\widehat {ABE} + \widehat {KHB} = 90^\circ \)

Advertisements (Quảng cáo)

Trong ∆KHB, ta có:

\(\widehat {KHB} + \widehat {ABE} + \widehat {BKH} = 180^\circ \) (tổng 3 góc trong tam giác)

\( \Rightarrow \widehat {BKH} = 180^\circ  – \left( {\widehat {ABE} + \widehat {BKH}} \right) = 180^\circ  – 90^\circ  = 90^\circ \)

Vậy \(DC \bot BE\).

Câu 47: Cho tam giác ABC có \(\widehat B = 2\widehat C\). Tia phân giác của góc B cắt AC ở D. Trên tia đối của tia BD lấy điểm E sao cho BE = AC. Trên tia đối của tia CB lấy điểm K sao cho CK = AB. Chứng minh rằng AE = AK

Ta có: \(\widehat B = 2\widehat {{C_1}}\left( {gt} \right) \Rightarrow \widehat {{C_1}} = {1 \over 2}\widehat B\)

Lại có \(\widehat {{B_1}} = \widehat {{B_2}}\) (vì BD là tia phân giác)

=> \(\widehat {{C_1}} = \widehat {{B_1}}\)                                                                   (1)

\(\widehat {{C_1}} + \widehat {{C_2}} = 180^\circ \) (kề bù)                                            (2)

\(\widehat {{B_1}} + \widehat {{B_3}} = 180^\circ \) (kề bù)                                            (3)

Advertisements (Quảng cáo)

Từ (1), (2) và (3) suy ra: \(\widehat {{C_2}} = \widehat {{B_3}}\)

Xét ∆ABE và ∆ACK, ta có:

AB  =  KC (gt)

\(\widehat {{B_3}} = \widehat {{C_2}}\) (chứng minh trên)

BE = CA (gt)

Suy ra: ∆ABE = ∆ KCA (c.g.c)

Vậy: AE = AK (2 cạnh tương ứng)

Câu 48: Cho tam giác ABC, K là trung điểm của AB, E là trung điểm của AC. Trên tia đối của tia KC lấy điểm M sao cho KM = KC. Trên tia đối của tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng A là trung điểm của MN.

Xét ∆AKM và ∆BKC, có:

AK = BK (gt)

\(\widehat {AKM} = \widehat {BKC}\) (đối đỉnh)

KM = KC (gt)

Suy ra:  ∆AKM  =  ∆ BKC(c.g.c)

\( \Rightarrow \) AM = BC (2 cạnh tương ứng)

\(\widehat {AMK} = \widehat {BCK}\) (2 góc tương ứng)

Suy ra: AM // BC (vì có cặp góc so le trong bằng nhau)

Xét ∆AEN và ∆ CEB, ta có:

AE = CE (gt)

\(\widehat {A{\rm{E}}N} = \widehat {CEB}\) (đối đỉnh)

EN = EB(gt)

Suy ra: ∆AEN = ∆ CEB(c.g.c)

=>AN = BC  (2 cạnh tương ứng)

\(\widehat {E{\rm{A}}N} = \widehat {ECB}\) (2 góc tương ứng)

Suy ra: AN // BC (vì có cặp góc so le trong bằng nhau)

Ta có: AM //BC và AN // BC nên hai đường thẳng AM và AN trùng nhau hay M, A, N thẳng hàng.                     (1)

AM = AN (vì cùng bằng BC)                                    (2)

Từ (1) và (2) suy ra: A là trung điểm của MN.

Advertisements (Quảng cáo)