Trang Chủ Sách bài tập lớp 12 SBT Toán 12

Bài 1.35,1.36, 1.37 trang 23 Sách BT Giải tích 12: Tính theo a khoảng cách giữa AC và DC’ ?

Đề toán tổng hợp chương I- Khối đa diện Sách bài tập Hình học 12. Giải bài 1.35,1.36, 1.37 trang 23 Sách bài tập Giải tích 12. Cho tứ diện đều ABCD. Gọi (H) là hình bát diện đều có các đỉnh là trung điểm các cạnh của tứ diện đều đó. Tính tỉ số … ?; Tính theo a khoảng cách giữa AC và DC’ ?

Bài 1.35: Cho tứ diện đều ABCD. Gọi (H) là hình bát diện đều có các đỉnh là trung điểm các cạnh của tứ diện đều đó. Tính tỉ số  \({{{V_{(H)}}} \over {{V_{ABCD}}}}\).

Gọi cạnh của tứ diện đều ABCD  là a thì cạnh của hình bát diện đều (H) là \({a \over 2}\) . Khi đó \({V_{ABCD}} = {a^3}{{\sqrt 2 } \over {12}},{V_{(H)}} = {1 \over 3}{({a \over 2})^3}\sqrt 2  = {a^3}{{\sqrt 2 } \over {24}}\)

Từ đó suy ra \({{{V_{(H)}}} \over {{V_{ABCD}}}} = {1 \over 2}\).

Bài 1.36: Cho hình lập phương ABCD.A’B’C’D’ cạnh a, M  là trung điểm của BB’. Tính theo a :

a) Khoảng cách giữa AC và DC’.

b) Độ dài đoạn vuông góc chung giữa CM và AB’.

Hướng dẫn làm bài

a) 

Gọi  d(AC, DC’) = h

Ta có C’A’ // CA , do đó:

d(AC, DC’) = d(AC, (A’C’D)) = d(C, (A’C’D)) = h

Ta có:  \({V_{A’.CDC’}} = {1 \over 3}{{{a^2}} \over 2}a = {{{a^3}} \over 6}\)

Để ý rằng tam giác A’C’D là tam giác đều cạnh bằng  \(a\sqrt 2 \).

Do đó: \({S_{A’C’D}} = {{{a^2}\sqrt 3 } \over 2}\);

Advertisements (Quảng cáo)

\({V_{C.A’C’D}} = {1 \over 3}{S_{A’C’D}}.h = {1 \over 3}.{{{a^2}\sqrt 3 } \over 2}h = {V_{A’.CDC’}} = {{{a^3}} \over 6}\)

Từ đó suy ra:  \(h = {{{{{a^3}} \over 6}} \over {{{{a^2}\sqrt 3 } \over 6}}} = {a \over {\sqrt 3 }} = {{a\sqrt 3 } \over 3}\)

b)

Từ A kẻ đường thẳng song song với MC’ , cắt DD’ tại N và A’D’ kéo dài tại J.

Đặt  h1 = d(MC’ , AB’) = d(M, (AB’N))

Ta có:  \({V_{M.AB’N}} = {V_{N.AB’M}} = {1 \over 3}{{{a^2}} \over 4}a = {{{a^3}} \over {12}}\)

Để ý rằng  N là trung điểm của DD’ , A’J = 2A’D’  và JA = JB’

Gọi I là trung điểm của AB’, khi đó  \(JI \bot AB’\).

Advertisements (Quảng cáo)

Ta có:   \({\rm{AJ}} = \sqrt {{\rm{AA}}{‘^2} + A'{J^2}}  = \sqrt {{a^2} + 4{a^2}}  = a\sqrt 5 ;AI = {{a\sqrt 2 } \over 2}\)

Suy ra:  \({\rm{IJ}} = \sqrt {5{a^2} – {{{a^2}} \over 2}}  = {{3a} \over {\sqrt 2 }}\)  ;

            \({S_{JAB’}} = {1 \over 2}{{3a} \over {\sqrt 2 }}a\sqrt 2  = {{3{a^2}} \over 2}\)

Do đó:  \({S_{AB’N}} = {1 \over 2}{S_{JAB’}} = {{3{a^2}} \over 4}\) ;

         \({V_{M.AB’N}} = {1 \over 3}{{3{a^2}} \over 4}{h_1} = {{{a^2}{h_1}} \over 4} = {{{a^3}} \over {12}}\)

Suy ra:  \({h_1} = {a \over 3}\)

Chú ý: Có thể tính thể tích SAB’N  bằng cách khác.

Để ý rằng:  \(NB’ = \sqrt {ND{‘^2} + B’D{‘^2}}  = \sqrt {{{{a^2}} \over 4} + 2{a^2}}  = {{3a} \over 2},\)

\(AN = {{a\sqrt 5 } \over 2},\,\,AB’ = a\sqrt 2 \)

Gọi \(\alpha  = \widehat {NAB’}\)  . Ta có: \(NB{^2} = {\rm{ }}A{N^2} + {\rm{ }}AB{^2}-{\rm{ }}2AN.AB.cos\alpha \)

Hay \({{9{a^2}} \over 4} = {{5{a^2}} \over 4} + 2{a^2} – 2{{a\sqrt 5 } \over 2}a\sqrt 2 \cos \alpha\)

\( \Rightarrow  \cos \alpha  = {1 \over {\sqrt {10} }} \Rightarrow  \sin \alpha  = {3 \over {\sqrt {10} }}\)

Do đó: \({S_{AB’N}} = {1 \over 2}AB’.AN.\sin \alpha  = {1 \over 2}a\sqrt 2 {{a\sqrt 5 } \over 2}{3 \over {\sqrt {10} }} = {{3{a^2}} \over 4}\)

Bài 1.37: Cho tứ diện ABCD. Gọi hA , hB, hC, hD  lần lượt là các đường cao của tứ diện xuất phát từ A, B, C, D và r là bán kính mặt cầu nội tiếp tứ diện. Chứng minh rằng:

\({1 \over {{h_A}}} + {1 \over {{h_B}}} + {1 \over {{h_C}}} + {1 \over {{h_D}}} = {1 \over r}\)

Gọi I là tâm mặt cầu nội tiếp tứ diện, V là thể tích tứ diện. Ta có

\(V = {V_{IBCD}} + {V_{ICDA}} + {V_{IDAB}} + {V_{IABC}}\)

\( \Rightarrow  I = {{{V_{IBCD}}} \over V} + {{{V_{ICDA}}} \over V} + {{{V_{IDAB}}} \over V} + {{{V_{IABC}}} \over V}\)

\(= {{{1 \over 3}r{S_{BCD}}} \over {{1 \over 3}{h_A}{S_{BCD}}}} + {{{1 \over 3}r{S_{CDA}}} \over {{1 \over 3}{h_B}{S_{CDA}}}} + {{{1 \over 3}r{S_{DAB}}} \over {{1 \over 3}{h_C}{S_{DAB}}}} + {{{1 \over 3}r{S_{ABC}}} \over {{1 \over 3}{h_D}{S_{ABC}}}}\)

\( = r({1 \over {{h_A}}} + {1 \over {{h_B}}} + {1 \over {{h_C}}} + {1 \over {{h_D}}})\)

\(\Rightarrow  {1 \over r} = {1 \over {{h_A}}} + {1 \over {{h_B}}} + {1 \over {{h_C}}} + {1 \over {{h_D}}}\)

Advertisements (Quảng cáo)