Bài 1: Cho mp \((P)\) và điểm \(A\) không thuộc \((P)\). Chứng minh rằng mọi mặt cầu đi qua \(A\) và có tâm nằm trên \((P)\) luôn luôn đi qua hai điểm cố định.
Lấy điểm \(O\) nằm trên mp \((P)\). Gọi \((S)\) là mặt cầu đi qua \(A\) có tâm \(O\).
Gọi \(A’\) là điểm đối xứng của \(A\) qua mp \((P)\) ta có \(OA’ = OA = R\) nên \((S)\) đi qua \(A’\). Vậy mặt cầu \((S)\) luôn đi qua hai điểm cố định \(A\) và \(A’\).
Bài 2: Xác định tâm và bán kính của mặt cầu ngoại tiếp hình chóp \(S.ABC\), biết \(SA = SB = SC = a\), \(\widehat {ASB} = {60^0},\widehat {BSC} = {90^0},\widehat {CSA} = {120^0}\).
Áp dụng định lí Cosin trong tam giác \(SAB, SAC\) ta có:
\(\eqalign{
& A{B^2} = S{A^2} + S{B^2} – 2SA.SB.\cos {60^0} \cr
& = {a^2} + {a^2} – 2{a^2}.{1 \over 2} = {a^2} \Rightarrow AB = a \cr
& A{C^2} = S{A^2} + S{C^2} – 2SA.SC.\cos {120^0} \cr
& = {a^2} + {a^2} – 2{a^2}\left( { – {1 \over 2}} \right) = 3{a^2} \Rightarrow AC = a\sqrt 3 \cr} \)
Trong tam giác vuông \(SBC\) có: \(B{C^2} = S{B^2} + S{C^2} = 2{a^2} \Rightarrow BC = a\sqrt 2 \)
Ta có: \(A{C^2} = A{B^2} + B{C^2} \Rightarrow \Delta ABC\) vuông tại \(B\).
Gọi \(H\) là trung điểm của \(AC\) thì \(H\) là tâm đường tròn ngoại tiếp tam giác ABC.
Advertisements (Quảng cáo)
Vì \(SA = SB = SC\) nên \(SH \bot mp\left( {ABC} \right)\)
Và \(S{H^2} = S{C^2} – H{C^2} = {a^2} – {\left( {{{a\sqrt 3 } \over 2}} \right)^2} = {{{a^2}} \over 4} \)
\(\Rightarrow SH = {a \over 2}\)
Gọi \(O\) là điểm đối xứng của \(S\) qua \(H\) thì \(SO = OA = OB = OC = a\) nên mặt cầu ngoại tiếp hình chóp \(S.ABC\) có tâm \(O\) và bán kính \(R = a\).
Bài 3: Cho hai đường tròn \((O; r)\) và \((O’; r’)\) cắt nhau tại hai điểm \(A, B\) và lần lượt nằm trên hai mặt phẳng phân biệt \((P)\) và \((P’)\).
a) Chứng minh rằng có mặt cầu \((S)\) đi qua hai đường tròn đó.
Advertisements (Quảng cáo)
b) Tìm bán kính \(R\) của mặt cầu \((S)\) khi \(r = 5, r’ = \sqrt {10} \), \(AB = 6\), \({\rm{OO}}’ = \sqrt {21} \).
a) Gọi \(M\) là trung điểm của \(AB\) ta có: \(OM \bot AB\) và \(O’M \bot AB \Rightarrow AB \bot \left( {OO’M} \right)\)
Gọi \(\Delta ,\,\Delta ‘\) lần lượt là trục của đường tròn \((O; r)\) và \((O’; r’)\) thì \(AB \bot \Delta \,\,,\,\,AB \bot \Delta ‘\). Do đó \(\Delta ,\,\Delta ‘\) cùng nằm trong mp \((OO’M)\).
Gọi \(I\) là giao điểm của \(\Delta \) và \(\Delta ‘\) thì \(I\) là tâm của mặt cầu \((S)\) đi qua hai đường tròn \((O; r)\) và \((O’; r’)\) và \(S\) có bán kính \(R = IA\).
b) Ta có: \(MA = MB = 3\,\,,\,\,OA = r = 5,\,\,OA’ = r’ = \sqrt {10} \)
\(\eqalign{
& OM = \sqrt {O{A^2} – A{M^2}} = \sqrt {25 – 9} = 4 \cr
& O’M = \sqrt {O'{A^2} – A{M^2}} = \sqrt {10 – 9} = 1 \cr} \)
Áp dụng định lí Cosin trong \(\Delta {\rm{OMO’}}\) ta có:
\(\eqalign{
& OO{‘^2} = O{M^2} + O'{M^2} – 2OM.O’M.\cos \widehat {OMO’} \cr
& \Rightarrow 21 = 16 + 1 – 2.4.1.cos\widehat {OMO’} \cr&\Rightarrow \cos \widehat {OMO’} = – {1 \over 2} \cr
& \Rightarrow \widehat {OMO’} = {120^0},\,\,\widehat {OIO’} = {60^0} \cr} \)
Áp dụng định lí Côsin trong tam giác \(OMO’\) ta có:
\(\eqalign{
& M{O^2} = MO{‘^2} + OO{‘^2} – 2MO’.OO’.cos\widehat {MO’O} \cr
& \Rightarrow \cos \widehat {MO’O} = {{\sqrt {21} } \over 7} \Rightarrow \sin \widehat {OO’I} = {{\sqrt {21} } \over 7} \cr} \)
(Vì \(\widehat {MO’O} + \widehat {OO’I} = {90^0}\))
Áp dụng định lí Cosin trong tam giác \(OIO’\) ta có:
\({{OI} \over {\sin \widehat {OO’I}}} = {{OO’} \over {\sin \widehat {OIO’}}} \Leftrightarrow {{OI} \over {{{\sqrt {21} } \over 7}}} = {{\sqrt {21} } \over {{{\sqrt 3 } \over 2}}} \Leftrightarrow OI = 2\sqrt 3 \)
Vậy \(R = \sqrt {O{A^2} + O{I^2}} = \sqrt {25 + 12} = \sqrt {37} \)