Bài 4: Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường sau quay quanh trục \(Ox\):
a) \(y = 1 – x^2\), \(y = 0\) ;
b) \(y = cosx, y = 0, x = 0, x = π\) ;
c) \(y = tanx, y = 0, x = 0\), \(x=\frac{\pi }{4}\) ;
a) Phương trình hoành độ giao điểm \(1 – x^2= 0 ⇔ x = ±1\).
Thể tích cần tìm là :
\(V=\pi \int_{-1}^{1}(1-x^{2})^{2}dx=2\pi \int_{0}^{1}(x^{4}-2x^{2}+1)dx\)
\(=2\pi \left (\frac{x^{4}}{5}- \frac{2}{3}x^{3}+x \right )|_{0}^{1}=2\pi\left ( \frac{1}{5}-\frac{2}{3}+1 \right )=\frac{16}{15}\pi\)
b) Thể tích cần tìm là :
Advertisements (Quảng cáo)
\(V= \pi \int_{0}^{\pi }cos^{2}xdx =\frac{\pi }{2}\int_{0}^{\pi}(1+cos2x)dx\)
\(=\frac{\pi }{2}\left (x+\frac{1}{2}sin2x \right )|_{0}^{\pi }=\frac{\pi }{2}\pi =\frac{\pi ^{2}}{2}\)
c) Thể tích cần tìm là :
\(V=\pi\int_{0}^{\frac{\pi }{4}}tan^{2}xdx=\pi\int_{0}^{\frac{\pi }{4} }\left (\frac{1}{cos^{2}x}-1 \right )dx\)
\(=\pi \left (tanx-x \right )|_{0}^{\frac{\pi }{4}}=\pi (1-\frac{\pi }{4})\).
Bài 5: Cho tam giác vuông \(OPM\) có cạnh \(OP\) nằm trên trục \(Ox\). Đặt \(\widehat {POM} = \alpha \)
Advertisements (Quảng cáo)
và \(OM = R\), \(\left( {0 \le \alpha \le {\pi \over 3},R > 0} \right)\)
Gọi là khối tròn xoay thu được khi quay tam giác đó xung quanh \(Ox\) (H.63).
a) Tính thể tích của theo \(α\) và \(R\).
b) Tìm \(α\) sao cho thể tích là lớn nhất.
a) Hoành độ điểm \(P\) là :
\(x_p= OP = OM. cos α = R.cosα\)
Phương trình đường thẳng \(OM\) là \(y = tanα.x\). Thể tích \(V\) của khối tròn xoay là:
\(V = \pi \int\limits_0^{R\cos \alpha } {{{\tan }^2}\alpha {{{x^3}} \over 3}\left| {_0^{R\cos \alpha } = {{\pi .{R^3}} \over 3}(\cos \alpha – {{\cos }^3}} \right.} \alpha )\)
b) Đặt \(t = cosα \Rightarrow t ∈ \left[ {{1 \over 2};1} \right]\). \(\left( \text{ vì }{\alpha \in \left[ {0;{\pi \over 3}} \right]} \right)\), \(α = arccos t\).
Ta có :
\(\eqalign{
& V = {{\pi {R^3}} \over 3}(t – {t^3});V’ = {{\pi {R^3}} \over 3}(1 – 3{t^2}) \cr
& V’ = 0 \Leftrightarrow \left[ \matrix{
t = {{\sqrt 3 } \over 3} \hfill \cr
t = {{ – \sqrt 3 } \over 3}\text{ (loại)} \hfill \cr} \right. \cr} \)
Từ đó suy ra \(V\) lớn nhất bằng \({{2\sqrt 3 \pi R^3} \over 27}\) \(\Leftrightarrow t = {{\sqrt 3 } \over 3} \Leftrightarrow \alpha = \arccos {{\sqrt 3 } \over 3}\)